Complex systems are embedded in our everyday experience. Stochastic modelling enables us to understand and predict the behaviour of such systems, cementing its utility across the quantitative sciences. Accurate models of highly non-Markovian processes -- where the future behaviour depends on events that happened far in the past -- must track copious amounts of information about past observations, requiring high-dimensional memories. Quantum technologies can ameliorate this cost, allowing models of the same processes with lower memory dimension than corresponding classical models. Here we implement such memory-efficient quantum models for a family of non-Markovian processes using a photonic setup. We show that with a single qubit of memory our implemented quantum models can attain higher precision than possible with any classical model of the same memory dimension. This heralds a key step towards applying quantum technologies in complex systems modelling.
翻译:复杂的系统嵌入了我们的日常经验中。 软体建模使我们能够理解和预测这些系统的行为,巩固其在整个定量科学中的实用性。 高度非马尔科维亚过程的精确模型 -- -- 今后的行为取决于过去发生的事件 -- -- 必须追踪大量关于过去观测的信息,需要高维记忆。 量子技术可以降低这一成本,允许与相应的古典模型相比记忆层面较低的类似过程的模型。 在这里,我们用光学设置为非马尔科维亚过程的大家庭实施这样的记忆高效量子模型。 我们显示,用单一的记忆量子模型,我们所执行的量子模型可以比任何具有相同记忆层面的古典模型更加精确。 这预示着在复杂的系统建模中应用量子技术的关键一步。