The Synthetic Control method has pioneered a class of powerful data-driven techniques to estimate the counterfactual reality of a unit from donor units. At its core, the technique involves a linear model fitted on the pre-intervention period that combines donor outcomes to yield the counterfactual. However, linearly combining spatial information at each time instance using time-agnostic weights fails to capture important inter-unit and intra-unit temporal contexts and complex nonlinear dynamics of real data. We instead propose an approach to use local spatiotemporal information before the onset of the intervention as a promising way to estimate the counterfactual sequence. To this end, we suggest a Transformer model that leverages particular positional embeddings, a modified decoder attention mask, and a novel pre-training task to perform spatiotemporal sequence-to-sequence modeling. Our experiments on synthetic data demonstrate the efficacy of our method in the typical small donor pool setting and its robustness against noise. We also generate actionable healthcare insights at the population and patient levels by simulating a state-wide public health policy to evaluate its effectiveness, an in silico trial for asthma medications to support randomized controlled trials, and a medical intervention for patients with Friedreich's ataxia to improve clinical decision-making and promote personalized therapy.


翻译:合成控制方法开创了一组强大的数据驱动技术,以估计一个单位从捐助单位获得的反现实现实。在其核心方面,该技术涉及一个在干预前时期安装的线性模型,该模型结合了捐赠者的结果以产生反事实。然而,在每次使用时间-意识加权数的案例中,线性地结合空间信息,未能捕捉到重要的单位间和单位内时间背景以及真实数据的复杂的非线性动态。我们相反地提议了一种方法,在干预开始之前使用当地随机信息,作为估计反事实序列的有希望的方法。为此,我们建议采用一种变异模型,利用特定的定位嵌入、修改的解coder注意面具,以及一个新的培训前任务,以进行超时序序列序列式模型的模拟。我们对合成数据的实验表明我们的方法在典型的小型捐赠者群体环境中的功效及其抵御噪音的稳健性。我们还在人口和病人层面产生可采取行动的保健洞察力,通过模拟一项全州公共卫生政策来评估其有效性,在用于改进个人治疗性临床试验的理疗程试验中,用一种可控制的理疗理疗程性疗法来改进个人治疗。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
61+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
19+阅读 · 2021年6月15日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
VIP会员
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
1+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员