This paper presents computationally feasible rank-one relaxation algorithms for the efficient simulation of a time-incremental damage model with nonconvex incremental stress potentials in multiple spatial dimensions. While the standard model suffers from numerical issues due to the lack of convexity, the relaxation techniques circumvent the problem of non-existence of minimizers and prevent mesh dependency of the solutions of discretized boundary value problems using finite elements. By the combination, modification and parallelization of the underlying convexification algorithms the approach becomes computationally feasible. A descent method and a Newton scheme enhanced by step size control strategies prevents stability issues related to local minima in the energy landscape and the computation of derivatives. Special techniques for the construction of continuous derivatives of the approximated rank-one convex envelope are discussed. A series of numerical experiments demonstrates the ability of the computationally relaxed model to capture softening effects and the mesh independence of the computed approximations.
翻译:本文介绍了在多个空间层面有效模拟具有非隐形增量压力潜力的、时间强化损害模型的高效模拟的、在多种空间层面具有非隐形增量压力潜力的、在计算上可行的一等放松算法;虽然标准模型由于缺乏细度而存在数字问题,但放松技术避免了最小化器不存在的问题,并防止了使用有限元素解决离散边界值问题的办法的网状依赖性;通过综合、修改和平行基本的凝固算法,这种方法在计算上变得可行;由级数控制战略强化的下降法和牛顿计划防止了与能源景观中的当地微型和衍生物的计算有关的稳定性问题;讨论了建造近似一等级螺旋形封套装的连续衍生物的特殊技术;一系列数字实验显示了计算宽松模型捕捉软化效应的能力和计算近似值的网状独立性。