Robot programming typically makes use of a set of mechanical skills that is acquired by machine learning. Because there is in general no guarantee that machine learning produces robot programs that are free of surprising behavior, the safe execution of a robot program must utilize monitoring modules that take sensor data as inputs in real time to ensure the correctness of the skill execution. Owing to the fact that sensors and monitoring algorithms are usually subject to physical restrictions and that effective robot programming is sensitive to the selection of skill parameters, these considerations may lead to different sensor input qualities such as the view coverage of a vision system that determines whether a skill can be successfully deployed in performing a task. Choosing improper skill parameters may cause the monitoring modules to delay or miss the detection of important events such as a mechanical failure. These failures may reduce the throughput in robotic manufacturing and could even cause a destructive system crash. To address above issues, we propose a sensing quality-aware robot programming system that automatically computes the sensing qualities as a function of the robot's environment and uses the information to guide non-expert users to select proper skill parameters in the programming phase. We demonstrate our system framework on a 6DOF robot arm for an object pick-up task.
翻译:机器人程序通常使用通过机器学习获得的一套机械技能。 因为一般而言,机器学习无法保证机器学习产生没有出人意料行为的机器人程序, 安全执行机器人程序必须使用将传感器数据作为实时投入的监控模块, 以确保技能执行的正确性。 由于传感器和监测算法通常受到物理限制, 有效的机器人程序对选择技能参数十分敏感, 这些考虑因素可能导致不同的传感器输入质量, 如视觉系统的视图覆盖, 从而决定一项技能是否能够成功部署于一项任务。 选择不适当的技能参数可能导致监测模块延迟或错过对机械故障等重要事件的检测。 这些失败可能会减少机器人制造的吞吐量, 甚至可能导致破坏性的系统崩溃。 为了解决上述问题, 我们提出一个感应质量的机器人程序系统, 自动将感测质量作为机器人环境的函数进行配置, 并使用信息指导非专家用户在编程阶段选择适当的技能参数 。 我们演示我们的系统框架, 用于6DOF 机器人臂, 用于接收物体。