We present a principled approach for designing stochastic Newton methods for solving finite sum optimization problems. Our approach has two steps. First, we re-write the stationarity conditions as a system of nonlinear equations that associates each data point to a new row. Second, we apply a Subsampled Newton Raphson method to solve this system of nonlinear equations. Using our approach, we develop a new Stochastic Average Newton (SAN) method, which is incremental by design, in that it requires only a single data point per iteration. It is also cheap to implement when solving regularized generalized linear models, with a cost per iteration of the order of the number of the parameters. We show through extensive numerical experiments that SAN requires no knowledge about the problem, neither parameter tuning, while remaining competitive as compared to classical variance reduced gradient methods (e.g. SAG and SVRG), incremental Newton and quasi-Newton methods (e.g. SNM, IQN).


翻译:我们提出一种原则性方法,用于设计用于解决有限和优化问题的随机牛顿方法。 我们的方法有两个步骤。 首先, 我们重新将静态条件写成一个非线性方程式系统, 将每个数据点与新行连接起来。 其次, 我们使用一个子抽样的牛顿 Raphson 方法来解决这个非线性方程式系统。 我们使用这个方法, 我们开发了一种新的慢速平均牛顿(SAN)方法, 这个方法通过设计而递增, 因为它只需要每迭代一个单一的数据点。 在解决常规化的通用线性模型时, 执行这个方法也很便宜, 并且按参数顺序的顺序反复计算成本。 我们通过广泛的数字实验显示, SAN 不需要对问题有任何了解, 也没有参数调整, 同时保持竞争力, 与传统的降低梯度方法( 如 SAG 和 SVRG)、 递增式牛顿和准牛顿方法( 如 SNM, IQN) 相比, 。

0
下载
关闭预览

相关内容

iOS 8 提供的应用间和应用跟系统的功能交互特性。
  • Today (iOS and OS X): widgets for the Today view of Notification Center
  • Share (iOS and OS X): post content to web services or share content with others
  • Actions (iOS and OS X): app extensions to view or manipulate inside another app
  • Photo Editing (iOS): edit a photo or video in Apple's Photos app with extensions from a third-party apps
  • Finder Sync (OS X): remote file storage in the Finder with support for Finder content annotation
  • Storage Provider (iOS): an interface between files inside an app and other apps on a user's device
  • Custom Keyboard (iOS): system-wide alternative keyboards

Source: iOS 8 Extensions: Apple’s Plan for a Powerful App Ecosystem
专知会员服务
52+阅读 · 2020年9月7日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年5月13日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
3+阅读 · 2016年2月24日
VIP会员
相关资讯
【论文笔记】通俗理解少样本文本分类 (Few-Shot Text Classification) (1)
深度学习自然语言处理
7+阅读 · 2020年4月8日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员