We present a principled approach for designing stochastic Newton methods for solving finite sum optimization problems. Our approach has two steps. First, we re-write the stationarity conditions as a system of nonlinear equations that associates each data point to a new row. Second, we apply a Subsampled Newton Raphson method to solve this system of nonlinear equations. Using our approach, we develop a new Stochastic Average Newton (SAN) method, which is incremental by design, in that it requires only a single data point per iteration. It is also cheap to implement when solving regularized generalized linear models, with a cost per iteration of the order of the number of the parameters. We show through extensive numerical experiments that SAN requires no knowledge about the problem, neither parameter tuning, while remaining competitive as compared to classical variance reduced gradient methods (e.g. SAG and SVRG), incremental Newton and quasi-Newton methods (e.g. SNM, IQN).
翻译:我们提出一种原则性方法,用于设计用于解决有限和优化问题的随机牛顿方法。 我们的方法有两个步骤。 首先, 我们重新将静态条件写成一个非线性方程式系统, 将每个数据点与新行连接起来。 其次, 我们使用一个子抽样的牛顿 Raphson 方法来解决这个非线性方程式系统。 我们使用这个方法, 我们开发了一种新的慢速平均牛顿(SAN)方法, 这个方法通过设计而递增, 因为它只需要每迭代一个单一的数据点。 在解决常规化的通用线性模型时, 执行这个方法也很便宜, 并且按参数顺序的顺序反复计算成本。 我们通过广泛的数字实验显示, SAN 不需要对问题有任何了解, 也没有参数调整, 同时保持竞争力, 与传统的降低梯度方法( 如 SAG 和 SVRG)、 递增式牛顿和准牛顿方法( 如 SNM, IQN) 相比, 。