This work provides a formalization of Knowledge Graphs (KGs) as a new class of graphs that we denote doubly exchangeable attributed graphs, where node and pairwise (joint 2-node) representations must be equivariant to permutations of both node ids and edge (& node) attributes (relations & node features). Double-permutation equivariant KG representations open a new research direction in KGs. We show that this equivariance imposes a structural representation of relations that allows neural networks to perform complex logical reasoning tasks in KGs. Finally, we introduce a general blueprint for such equivariant representations and test a simple GNN-based double-permutation equivariant neural architecture that achieve state-of-the-art Hits@10 test accuracy in the WN18RR, FB237 and NELL995 inductive KG completion tasks, and can accurately perform logical reasoning tasks that no existing methods can perform, to the best of our knowledge.
翻译:本研究将知识图谱(KGs)正式化为我们称之为双重可交换的属性图,其中节点和成对(联合2节点)表示必须对节点ID和属性(关系和节点特征)的排列均等变。双置换等变的KG表示为KG关系提供了一种结构性表征方式,使神经网络能够在KG中执行复杂的逻辑推理任务。最后,我们引入一种实现该等变性表示的通用蓝图,并测试一种基于GNN的双置换等变神经结构,该结构在WN18RR、FB237和NELL995归纳KG补全任务中实现了最先进的Hits@10测试准确度,并能够准确执行无现有方法可以执行的逻辑推理任务。