We study p-Laplacians and spectral clustering for a recently proposed hypergraph model that incorporates edge-dependent vertex weights (EDVWs). These weights can reflect different importance of vertices within a hyperedge, thus conferring the hypergraph model higher expressivity and flexibility. By constructing submodular EDVWs-based splitting functions, we convert hypergraphs with EDVWs into submodular hypergraphs for which the spectral theory is better developed. In this way, existing concepts and theorems such as p-Laplacians and Cheeger inequalities proposed under the submodular hypergraph setting can be directly extended to hypergraphs with EDVWs. For submodular hypergraphs with EDVWs-based splitting functions, we propose an efficient algorithm to compute the eigenvector associated with the second smallest eigenvalue of the hypergraph 1-Laplacian. We then utilize this eigenvector to cluster the vertices, achieving higher clustering accuracy than traditional spectral clustering based on the 2-Laplacian. More broadly, the proposed algorithm works for all submodular hypergraphs that are graph reducible. Numerical experiments using real-world data demonstrate the effectiveness of combining spectral clustering based on the 1-Laplacian and EDVWs.
翻译:我们为最近提出的高光谱模型研究P-Laplacians和光谱集成,该模型将吸收边缘依赖的顶端重量(EDVWs),这些重量可以反映顶部顶部脊椎的不同重要性,从而赋予高光谱模型更高的直观性和灵活性。我们通过建立基于亚模量 EDVWs 的分解功能,将EDVWs 的高光谱转换成光谱理论较完善的次模量高光谱。这样,现有的概念和理论,如在亚模版高光谱设置下提出的P-Laplacians和Cheeger不平等,可以直接扩展到与 EDVWs 的高光谱。对于以 EDVVW 为基础的分解功能,我们建议一种高效的算法,将与高光谱1-Laplaceian 的第二最小值相联的顶部高光谱高光谱高光谱转换成子。然后我们利用这个分流器组合到顶部的脊椎,从而在基于2-LEVPLA的图像模型的复合模型模型模型上实现了高光谱组合组合。对于基于1号的模型的模型的模型的模拟的模型的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟的模拟算算法的模拟的模拟的模拟的模拟的计算。