This paper presents two results concerning uniform confidence intervals for the tail index and the extreme quantile. First, we show that it is impossible to construct a length-optimal confidence interval satisfying the correct uniform coverage over a local non-parametric family of tail distributions. Second, in light of the impossibility result, we construct honest confidence intervals that are uniformly valid by incorporating the worst-case bias in the local non-parametric family. The proposed method is applied to simulated data and a real data set of National Vital Statistics from National Center for Health Statistics.
翻译:本文介绍了关于尾部指数和极端微量值统一置信间隔的两个结果。首先,我们表明不可能建立一个长度最佳置信间隔,满足当地非参数尾部分布系列的正确统一覆盖。第二,鉴于不可能的结果,我们建立诚实的置信间隔,将当地非参数序列中最坏的偏差纳入其中,从而统一有效。拟议方法应用于模拟数据和国家卫生统计中心提供的国家生命统计数据的真实数据集。