It is common to model a deterministic response function, such as the output of a computer experiment, as a Gaussian process with a Mat\'ern covariance kernel. The smoothness parameter of a Mat\'ern kernel determines many important properties of the model in the large data limit, such as the rate of convergence of the conditional mean to the response function. We prove that the maximum likelihood and cross-validation estimates of the smoothness parameter cannot asymptotically undersmooth the truth when the data are obtained on a fixed bounded subset of $\mathbb{R}^d$. That is, if the data-generating response function has Sobolev smoothness $\nu_0 + d/2$, then the smoothness parameter estimates cannot remain below $\nu_0$ as more data are obtained. The results are based on approximation theory in Sobolev spaces and a general theorem, proved using reproducing kernel Hilbert space techniques, about sets of values the parameter estimates cannot take.
翻译:通常的做法是将确定响应功能,例如计算机实验的输出,作为Gaussian进程,以 Mat\'ern 共性内核作为Gaussian 进程。 Mat\'ern 内核的顺畅参数在大数据限中决定模型的许多重要属性, 如有条件平均值与响应函数的趋同率。 我们证明, 光滑参数的最大可能性和交叉校验估计不能在获得固定约束的 $\mathbb{R ⁇ d$子集的数据时, 使真理模糊不清。 也就是说, 如果生成数据的响应功能具有 Sobolev 滑滑度 $\\ nu_ 0 + d/2$, 那么随着获得更多的数据, 光滑度参数估计不能保持在 $\ nu_ 0 $ 之下。 结果基于索博列空间的近似理论和一般理论, 使用再生内核Hilbert 空间技术证明, 有关参数估计数组的数值。