Fairness has emerged as an important consideration in algorithmic decision-making. Unfairness occurs when an agent with higher merit obtains a worse outcome than an agent with lower merit. Our central point is that a primary cause of unfairness is uncertainty. A principal or algorithm making decisions never has access to the agents' true merit, and instead uses proxy features that only imperfectly predict merit (e.g., GPA, star ratings, recommendation letters). None of these ever fully capture an agent's merit; yet existing approaches have mostly been defining fairness notions directly based on observed features and outcomes. Our primary point is that it is more principled to acknowledge and model the uncertainty explicitly. The role of observed features is to give rise to a posterior distribution of the agents' merits. We use this viewpoint to define a notion of approximate fairness in ranking. We call an algorithm $\phi$-fair (for $\phi \in [0,1]$) if it has the following property for all agents $x$ and all $k$: if agent $x$ is among the top $k$ agents with respect to merit with probability at least $\rho$ (according to the posterior merit distribution), then the algorithm places the agent among the top $k$ agents in its ranking with probability at least $\phi \rho$. We show how to compute rankings that optimally trade off approximate fairness against utility to the principal. In addition to the theoretical characterization, we present an empirical analysis of the potential impact of the approach in simulation studies. For real-world validation, we applied the approach in the context of a paper recommendation system that we built and fielded at the KDD 2020 conference.
翻译:公平是算法决策中的一个重要考虑因素。 当高品位的代理人比低品位的代理人获得比低品位更差的结果时,就会出现不公平现象。 我们的中心点是,不公平的首要原因是不确定性。 做出决策的主要或算法永远无法获得代理人的真正优点,而是使用只能不完全预测其优点的代理特征(例如GPA、明星评级、建议字母)。 这些方法中没有一个完全能抓住代理人的优点; 但现有方法大多是直接根据观察到的特征和结果界定公平概念。 我们的首要点是,要更明确地承认和模拟不确定性。 观察到的特征的作用是产生代理人优点的表面分布。 我们用这个观点来界定排名中大致的公平性概念。 我们称之为美元-美元-美元-美元- 美元- 美元- 美元- 全部美元- 的属性: 如果按所观察到的特性直接根据观察到的特征和结果, 美元- 美元- 则按当时的美元- 美元计算的高级代理商, 以美元- 美元- 美元- 美元- 其最高价值- 其最高价值- 其最高价值- 其最高价值- 其最高价值- 其最高价值- 其头值- 其头值- 其头值- 其头值- 其头值- 其头值- 其头值- 其头值- 其头值- 其头值 其头值- 其头值/ 其头- 其头值- 其价值- 其头- 其头值- 其头值- 至最值- 其值- 其头值- 其头值- 其头值 其头值- 其头值- 其头值- 其头值- 其值- 其值- 其值- 其头值- 其值- 至最值- 其值- 其值- 其值-