The constant increase in the complexity of data networks motivates the search for strategies that make it possible to reduce current monitoring times. This paper shows the way in which multilayer network representation and the application of multiscale analysis techniques, as applied to software-defined networks, allows for the visualization of anomalies from "coarse views of the network topology". This implies the analysis of fewer data, and consequently the reduction of the time that a process takes to monitor the network. The fact that software-defined networks allow for the obtention of a global view of network behavior facilitates detail recovery from affected zones detected in monitoring processes. The method is evaluated by calculating the reduction factor of nodes, checked during anomaly detection, with respect to the total number of nodes in the network.


翻译:数据网络的复杂程度不断提高,促使人们寻找能够减少当前监测时间的战略。本文件说明了多层网络的分布方式和多尺度分析技术的应用方式,这些技术适用于软件界定的网络,使得从“网络地形图示的粗略观点”中可以直观地看到异常现象。这意味着分析较少的数据,从而缩短了监测网络的程序所需的时间。软件界定的网络允许对网络行为进行全球观察,这一事实有助于从监测过程中发现的受影响地区详细恢复。该方法通过计算节点的减少系数来评估,在发现异常时加以检查,以计算网络节点的总数。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
50+阅读 · 2021年1月20日
商业数据分析,39页ppt
专知会员服务
162+阅读 · 2020年6月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
2019年机器学习框架回顾
专知会员服务
36+阅读 · 2019年10月11日
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Arxiv
0+阅读 · 2021年7月29日
Arxiv
0+阅读 · 2021年7月28日
Arxiv
3+阅读 · 2018年10月25日
VIP会员
相关VIP内容
相关资讯
时序数据异常检测工具/数据集大列表
极市平台
65+阅读 · 2019年2月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
【今日新增】IEEE Trans.专刊截稿信息8条
Call4Papers
7+阅读 · 2017年6月29日
Top
微信扫码咨询专知VIP会员