Uncertainty is an essential consideration for time series forecasting tasks. In this work, we specifically focus on quantifying the uncertainty of traffic forecasting. To achieve this, we develop Deep Spatio-Temporal Uncertainty Quantification (DeepSTUQ), which can estimate both aleatoric and epistemic uncertainty. We first leverage a spatio-temporal model to model the complex spatio-temporal correlations of traffic data. Subsequently, two independent sub-neural networks maximizing the heterogeneous log-likelihood are developed to estimate aleatoric uncertainty. For estimating epistemic uncertainty, we combine the merits of variational inference and deep ensembling by integrating the Monte Carlo dropout and the Adaptive Weight Averaging re-training methods, respectively. Finally, we propose a post-processing calibration approach based on Temperature Scaling, which improves the model's generalization ability to estimate uncertainty. Extensive experiments are conducted on four public datasets, and the empirical results suggest that the proposed method outperforms state-of-the-art methods in terms of both point prediction and uncertainty quantification.
翻译:不确定因素是时间序列预测任务的一个基本考虑因素。 在这项工作中,我们特别侧重于量化交通预测的不确定性。为了实现这一点,我们开发了深海空间-时空不确定性定量(DeepSTUQ),可以分别估计疏散性和感知性不确定性。我们首先利用一个时空空间模型来模拟交通数据复杂的时空相关性。随后,我们开发了两个独立的次神经网络,最大限度地利用混杂的日志相似性来估计异常的不确定性。为了估计异常不确定性,我们通过将蒙特卡洛的辍学和适应性微弱再培训方法结合起来,将变异性推断和深度隐蔽的优点结合起来。最后,我们提出以温度缩放法为基础的后处理校准方法,提高模型估计不确定性的总体能力。在四个公共数据集上进行了广泛的实验,实验结果显示,拟议的方法在预测和定值两方面都超越了状态。