Transport engineers employ various interventions to enhance traffic-network performance. Recent emphasises on cycling as a sustainable travel mode aims to reduce traffic congestion. Quantifying the impacts of Cycle Superhighways is complicated due to the non-random assignment of such an intervention over the transport network and heavy-tailed distribution of traffic flow. Treatment effects on asymmetric and the heavy-tailed distributions are better reflected at extreme tails rather than at averages or intermediate quantiles. In such situations, standard methods for estimating quantile treatment effects at the extremes can provide misleading inference due to the high variability of estimates. In this work, we propose a novel method to estimate the treatment effect at extreme tails incorporating heavy-tailed feature in the outcome distribution. Simulation results show the superiority of the proposed method over existing estimators for quantile causal effects at extremes. The analysis of London transport data utilising the proposed method indicates that the traffic flow increased substantially after the Cycle Superhighway came into operation. The findings can assist government agencies in effective decision making to avoid high consequence events and improve network performance.
翻译:运输工程师采用各种干预措施来提高交通网络的性能。最近强调自行车作为一种可持续旅行模式,目的是减少交通堵塞。由于对运输网络和交通流量的繁琐分布没有随机分配,因此计算循环超级高速公路的影响十分复杂。对不对称和重尾分配的治疗效果在极端尾巴而不是平均或中间量上得到更好的反映。在这种情况下,估计极端地区的孔径处理效应的标准方法可能会由于估计的高度变化而产生误导性推断。在这项工作中,我们提出了一个新的方法来估计极端尾巴的治疗效果,其中包括结果分布中的重尾巴特征。模拟结果显示,拟议的方法优于现有估计者,以便在极端地区产生微量因果关系效应。伦敦运输数据的分析利用了拟议的方法,表明在循环超级高速公路投入运行后流量大幅度增加。研究结果有助于政府机构作出有效决策,以避免产生高后果,改善网络性能。