A comprehensive understanding of human-object interaction (HOI) requires detecting not only a small portion of predefined HOI concepts (or categories) but also other reasonable HOI concepts, while current approaches usually fail to explore a huge portion of unknown HOI concepts (i.e., unknown but reasonable combinations of verbs and objects). In this paper, 1) we introduce a novel and challenging task for a comprehensive HOI understanding, which is termed as HOI Concept Discovery; and 2) we devise a self-compositional learning framework (or SCL) for HOI concept discovery. Specifically, we maintain an online updated concept confidence matrix during training: 1) we assign pseudo-labels for all composite HOI instances according to the concept confidence matrix for self-training; and 2) we update the concept confidence matrix using the predictions of all composite HOI instances. Therefore, the proposed method enables the learning on both known and unknown HOI concepts. We perform extensive experiments on several popular HOI datasets to demonstrate the effectiveness of the proposed method for HOI concept discovery, object affordance recognition and HOI detection. For example, the proposed self-compositional learning framework significantly improves the performance of 1) HOI concept discovery by over 10% on HICO-DET and over 3% on V-COCO, respectively; 2) object affordance recognition by over 9% mAP on MS-COCO and HICO-DET; and 3) rare-first and non-rare-first unknown HOI detection relatively over 30% and 20%, respectively. Code is publicly available at https://github.com/zhihou7/HOI-CL.
翻译:全面理解人体与人体之间相互作用(HOI)不仅需要探测一小部分预先定义的HOI概念(或类别),还需要探测其他合理的HOI概念,而目前的做法通常无法探索大量未知 HOI概念(即未知但合理结合动词和物体)中的很大一部分未知 HOI概念。在本文中,1 我们为全面了解HOI提出了新颖而具有挑战性的任务,称为HOI概念发现;和2 我们为HOI概念发现设计了一个自我组合学习框架(或SCL)。具体地说,我们在培训期间保持一个在线更新的概念信任矩阵:(1) 我们根据自我培训的概念信任矩阵,为所有复合 HOI 复合事件指定假标签;和(2) 我们利用所有复合 HOI 实例的预测,更新概念信任矩阵。因此,拟议的方法使得对已知和未知 HOI 概念的学习成为既已知又未知的概念。 我们在一些流行的HOI 第一次OI 数据集上进行了广泛的实验,以证明拟议的HI 概念发现方法的有效性,目的是承认和 HOI 的检测。 例如,拟议的自我定位 30 CO 和 分别改进了OI 的自我定位框架。