Variational approximations are increasingly based on gradient-based optimization of expectations estimated by sampling. Handling discrete latent variables is then challenging because the sampling process is not differentiable. Continuous relaxations, such as the Gumbel-Softmax for categorical distribution, enable gradient-based optimization, but do not define a valid probability mass for discrete observations. In practice, selecting the amount of relaxation is difficult and one needs to optimize an objective that does not align with the desired one, causing problems especially with models having strong meaningful priors. We provide an alternative differentiable reparameterization for categorical distribution by composing it as a mixture of discrete normalizing flows. It defines a proper discrete distribution, allows directly optimizing the evidence lower bound, and is less sensitive to the hyperparameter controlling relaxation.


翻译:不同近似值越来越多地以基于梯度的优化方法为基础,根据抽样估计的预期值进行不同的估计。 处理离散潜在变量因此具有挑战性,因为取样过程是无法区分的。 持续放松,例如用于绝对分布的甘贝尔-软体,能够实现基于梯度的优化,但并没有为离散观测确定有效的概率质量。 实际上,选择放松的数量是困难的,需要优化一个与所期望的不一致的目标,特别是给具有很强有意义的前科的模型造成问题。 我们通过将它组成离散正常流的混合体,为绝对分布提供了另一种可区别的重新校准法。 它定义了适当的离散分布,允许直接优化较低约束的证据,对超分光度控制放松不那么敏感。

1
下载
关闭预览

相关内容

【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Policy Targeting under Network Interference
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月27日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
VIP会员
相关VIP内容
【干货书】机器学习速查手册,135页pdf
专知会员服务
125+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
强化学习最新教程,17页pdf
专知会员服务
176+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
19篇ICML2019论文摘录选读!
专知
28+阅读 · 2019年4月28日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Policy Targeting under Network Interference
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月30日
Arxiv
0+阅读 · 2021年3月27日
A Probe into Understanding GAN and VAE models
Arxiv
9+阅读 · 2018年12月13日
Top
微信扫码咨询专知VIP会员