Recommender systems can automatically recommend users with items that they probably like. The goal of them is to represent the user and item and model their interaction. Existing methods have primarily learned the user's preferences and item's features with vectorized representations, and modeled the user-item interaction by the similarity of them. In fact, the user's preferences to items can be traced to his/her preferences to item attributes, and the user's different preferences are also related. Thus, exploring such fine-grained preferences and modeling their relationships could help better understand the user's preferences. Toward this end, we propose a dual preference distribution learning framework, which jointly captures the user's preferences to both the items and attributes by a Gaussian distribution, termed the general and specific preference distributions, respectively. In this manner, the mean vector of the Gaussian distribution can capture the user's preferences, while its covariance matrix can learn their relationships. The proposed DUPLE is a generative method that can produce the preference distribution for a given user. Thus, by tracking the user's specific preference distribution, w can summarize a preferred attribute profile for each user, depicting his/her preferred item attributes. Based on that, we can provide the explanation of recommending an item with the overlap between the item attributes of the user prefers and the item has. Extensive quantitative and qualitative experiments on six public datasets demonstrate the effectiveness and explainability of the DUPLE method.
翻译:推荐人系统可以自动推荐可能喜欢的项目的用户。 目的是代表用户和项目, 并建模他们的互动模式。 现有方法主要以矢量化的表达方式了解用户的偏好和项目的特点, 并用相似的表达方式模拟用户项目的互动模式。 事实上, 用户对项目的偏好可以追溯到他/ 她对项目属性的偏好, 而用户的不同偏好也与此相关。 因此, 探索这些精细的偏好和模拟他们的关系, 有助于更好地了解用户的偏好。 为此, 我们提议了一个双重优惠分配学习框架, 通过一个 Gaussian 的分布, 共同捕捉到用户对项目和属性的偏好, 分别标出一般和具体的偏好。 这样, 高斯分布人对项目的偏好可以捕捉到用户的偏好其偏好, 而用户的偏好则可以学习它们的偏好关系。 提议的DUPLE是一种可以为特定用户的偏好分配方式。 因此, 我们通过跟踪用户的偏爱度分布方式, 来总结用户对项目的偏好度, 以及质量选择对每个用户项目 的精准性 的比, 和质量 的比, 展示了每个用户项目的精度 。