In this work, we propose using differentiable cascaded biquads to model an audio distortion effect. We extend trainable infinite impulse response (IIR) filters to the hyperconditioned case, in which a transformation is learned to directly map external parameters of the distortion effect to its internal filter and gain parameters, along with activations necessary to ensure filter stability. We propose a novel, efficient training scheme of IIR filters by means of a Fourier transform. Our models have significantly fewer parameters and reduced complexity relative to more traditional black-box neural audio effect modeling methodologies using finite impulse response filters. Our smallest, best-performing model adequately models a BOSS MT-2 pedal at 44.1 kHz, using a total of 40 biquads and only 210 parameters. Its model parameters are interpretable, can be related back to the original analog audio circuit, and can even be intuitively altered by machine learning non-specialists after model training. Quantitative and qualitative results illustrate the effectiveness of the proposed method.
翻译:在这项工作中,我们建议使用不同的级联双夸来模拟音频扭曲效应。我们将可训练的无限脉冲反应过滤器(IIR)过滤器推广到超条件情况,在超条件情况下,学会转换直接绘制扭曲效应的外部参数到内部过滤器和增益参数,以及确保过滤稳定性所必需的激活。我们提议通过Fourier变换方式对IR过滤器进行新的、高效的培训计划。我们的模型的参数要少得多,复杂性要小得多,而较传统的黑箱神经音效模型方法则使用有限的脉冲反应过滤器。我们最小的、最优秀的模型充分模拟BOSS MT-2 Pedal,使用总共40双方和210个参数。模型参数是可以解释的,可以与原始模拟音频电路相关,甚至可以由机器学习的非专家在模型训练后直接改变。定量和定性结果说明了拟议方法的有效性。