Solving linear systems is often the computational bottleneck in real-life problems. Iterative solvers are the only option due to the complexity of direct algorithms or because the system matrix is not explicitly known. Here, we develop a two-level preconditioner for regularized least squares linear systems involving a feature or data matrix. Variants of this linear system may appear in machine learning applications, such as ridge regression, logistic regression, support vector machines and Bayesian regression. We use clustering algorithms to create a coarser level that preserves the principal components of the covariance or Gram matrix. This coarser level approximates the dominant eigenvectors and is used to build a subspace preconditioner accelerating the Conjugate Gradient method. We observed speed-ups for artificial and real-life data.
翻译:解决线性系统往往是实际生活问题的计算瓶颈。 循环解答器是唯一的选择, 原因是直接算法的复杂性或系统矩阵不明确。 在这里, 我们为包含特性或数据矩阵的正规化最小平方线系统开发了两级先决条件。 这种线性系统的变体可能出现在机器学习应用中, 如脊柱回归、 后勤回归、 支持矢量机器 和巴耶斯回归 。 我们使用群集算法来创建粗化的层次, 以保存共变或格拉姆矩阵的主要组成部分。 这种粗化水平接近主要的叶质, 并用来构建一个子空间前置器, 加速同位梯度梯度法。 我们观察了人工和真实生命数据的加速度 。