Over the past several years, we have witnessed the impressive progress of learned image compression. Recent learned image codecs are based on auto-encoders, that first encode an image into low-dimensional latent representations and then decode them for reconstruction. To capture spatial dependencies in the latent space, prior works exploit hyperprior and spatial context model to facilitate entropy estimation. However, they are hard to model effective long-range dependencies of the latents. In this paper, we explore to further reduce spatial redundancies among the latent variables by utilizing cross-channel relationships for explicit global prediction in the latent space. Obviously, it will generate bits overhead to transmit the prediction vectors that indicate the global correlations between reference point and current decoding point. Therefore, to avoid the transmission of overhead, we propose a 3-D global context model, which separates the latents into two channel groups. Once the first group is decoded, the proposed module will leverage the known group to model spatial correlations that guide the global prediction for the unknown group and thus achieve more efficient entropy estimation. Besides, we further adopt split attention module to build more powerful transform networks. Experimental results demonstrate that our full image compression model outperforms standard VVC/H.266 codec on Kodak dataset in terms of both PSNR and MS-SSIM, yielding the state-of-the-art rate-distortion performance.
翻译:在过去几年里,我们目睹了在学习到的图像压缩方面取得的令人印象深刻的进展。最近学习的图像编码器以自动编码器为基础,首先将图像编码成低维潜潜表,然后将其解码用于重建。为了捕捉潜潜空间的空间依赖性,先前的作品利用超光度和空间背景模型来便利渗透估计。然而,它们很难建模有效的潜层长期依赖性。在本文件中,我们探索如何进一步减少潜在变量之间的空间冗余,方法是利用跨通道关系来对潜藏空间进行明确的全球预测。显然,它将产生比特间接数据来传输显示参考点和当前解码点之间的全球关联性向量。因此,为了避免间接数据传输,我们提出了一个3D全球背景模型,将潜值分离成两个频道组。在解码后,拟议的模块将利用已知的小组来模拟空间相关性,用以指导未知群体的全球预测,从而实现更高效的加密估计。此外,我们进一步采用分裂式的注意模块,以构建更强大的甚高压的图像网络。