The Wasserstein distance provides a notion of dissimilarities between probability measures, which has recent applications in learning of structured data with varying size such as images and text documents. In this work, we analyze the $k$-nearest neighbor classifier ($k$-NN) under the Wasserstein distance and establish the universal consistency on families of distributions. Using previous known results on the consistency of the $k$-NN classifier on infinite dimensional metric spaces, it suffices to show that the families is a countable union of finite dimension sets. As a result, we show that the $k$-NN classifier is universally consistent on spaces of finitely supported measures, the space of Gaussian measures, and the space of measures with finite wavelet densities. In addition, we give a counterexample to show that the universal consistency does not hold on $\mathcal{W}_p((0,1))$.


翻译:瓦色尔斯坦距离提供了一种概率度量差异的概念,它最近应用于学习图像和文本文件等大小不一的结构化数据。 在这项工作中,我们分析了瓦色尔斯坦距离下最近的邻居分类器(k$-NN),并建立了分布式家庭的普遍一致性。利用以前已知的关于千元-NNE分类器在无限维度空间上的一致性的结果,足以表明这些家庭是有限维度组的可计数组合。结果,我们显示,美元-NNE分类器在有限支持措施的空间、高斯测量空间和有限波密度措施的空间上是普遍一致的。此外,我们用一个反实例来表明,普遍性一致性并不维持在$mathcal{W ⁇ p( 0,1)美元上。

1
下载
关闭预览

相关内容

人类接受高层次教育、进行原创性研究的场所。 现在的大学一般包括一个能授予硕士和博士学位的研究生院和数个专业学院,以及能授予学士学位的一个本科生院。大学还包括高等专科学校
5G网络安全标准化白皮书, 53页pdf
专知会员服务
66+阅读 · 2021年5月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
PyTorch 实战:计算 Wasserstein 距离
Python开发者
5+阅读 · 2019年3月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年8月13日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
0+阅读 · 2021年8月11日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
9+阅读 · 2018年1月4日
VIP会员
相关VIP内容
5G网络安全标准化白皮书, 53页pdf
专知会员服务
66+阅读 · 2021年5月15日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
30+阅读 · 2019年10月18日
MIT新书《强化学习与最优控制》
专知会员服务
277+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
53+阅读 · 2019年9月29日
相关资讯
PyTorch 实战:计算 Wasserstein 距离
Python开发者
5+阅读 · 2019年3月19日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员