We propose a new unified framework for causal inference when outcomes depend on how agents are linked in a social or economic network. Such network interference describes a large literature on treatment spillovers, social interactions, social learning, information diffusion, social capital formation, and more. Our approach works by first characterizing how an agent is linked in the network using the configuration of other agents and connections nearby as measured by path distance. The impact of a policy or treatment assignment is then learned by pooling outcome data across similarly configured agents. In the paper, we propose a new nonparametric modeling approach and consider two applications to causal inference. The first application is to testing policy irrelevance/no treatment effects. The second application is to estimating policy effects/treatment response. We conclude by evaluating the finite-sample properties of our estimation and inference procedures via simulation.
翻译:我们提议一个新的因果推断统一框架,如果结果取决于社会或经济网络中各种物剂是如何联系在一起的。这种网络干扰描述了关于治疗外溢、社会互动、社会学习、信息传播、社会资本形成等方面的大量文献。我们的方法是首先说明一个物剂是如何在网络中使用其他物剂的配置和以路径距离衡量的附近联系的。然后,通过将结果数据汇集到相似的物剂中来了解政策或治疗任务的影响。在文件中,我们提出了一个新的非参数模型化方法,并考虑对因果关系推断的两个应用。第一个应用是测试政策无关性/无治疗效果。第二个应用是估算政策效果/治疗反应。我们最后通过模拟来评估我们估算和推断程序的有限性能。