Building NLP systems that serve everyone requires accounting for dialect differences. But dialects are not monolithic entities: rather, distinctions between and within dialects are captured by the presence, absence, and frequency of dozens of dialect features in speech and text, such as the deletion of the copula in "He {} running". In this paper, we introduce the task of dialect feature detection, and present two multitask learning approaches, both based on pretrained transformers. For most dialects, large-scale annotated corpora for these features are unavailable, making it difficult to train recognizers. We train our models on a small number of minimal pairs, building on how linguists typically define dialect features. Evaluation on a test set of 22 dialect features of Indian English demonstrates that these models learn to recognize many features with high accuracy, and that a few minimal pairs can be as effective for training as thousands of labeled examples. We also demonstrate the downstream applicability of dialect feature detection both as a measure of dialect density and as a dialect classifier.


翻译:为每个人服务的建设NLP系统需要考虑方言差异。但方言并不是单一实体:相反,言语和文字中数十种方言特征的存在、缺乏和频率,如删除“He ⁇ running ” 中的 Copula。在本文中,我们引入了方言特征探测任务,并提出了两种多任务学习方法,这两种方法都以预先培训的变压器为基础。对于大多数方言来说,没有对这些特征的大型附加说明的体,因此难以培训识别者。我们用少量的最小对子来培训我们的模型,其基础是语言学家通常如何定义方言特征。对一套由印度英语的22个方言特征组成的测试评价显示,这些模型学会了高度精准地识别许多特征,并且有几对最起码的对子可以有效地培训,如同数千个标注的例子。我们还展示了方言特征检测作为方言密度和方言分类方法的下游适用性。

0
下载
关闭预览

相关内容

零样本文本分类,Zero-Shot Learning for Text Classification
专知会员服务
95+阅读 · 2020年5月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
5+阅读 · 2019年11月22日
Learning to Weight for Text Classification
Arxiv
8+阅读 · 2019年3月28日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
15+阅读 · 2018年2月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Top
微信扫码咨询专知VIP会员