In text-audio retrieval (TAR) tasks, due to the heterogeneity of contents between text and audio, the semantic information contained in the text is only similar to certain frames within the audio. Yet, existing works aggregate the entire audio without considering the text, such as mean-pooling over the frames, which is likely to encode misleading audio information not described in the given text. In this paper, we present a text-aware attention pooling (TAP) module for TAR, which is essentially a scaled dot product attention for a text to attend to its most semantically similar frames. Furthermore, previous methods only conduct the softmax for every single-side retrieval, ignoring the potential cross-retrieval information. By exploring the intrinsic prior of each text-audio pair, we introduce a prior matrix revised (PMR) loss to filter the hard case with high (or low) text-to-audio but low (or high) audio-to-text similarity scores, thus achieving the dual optimal match. Experiments show that our TAP significantly outperforms various text-agnostic pooling functions. Moreover, our PMR loss also shows stable performance gains on multiple datasets.


翻译:在文本-音频检索(TAR)任务中,由于文本和音频之间内容的多样性,文本中所含语义信息与音频中的某些框架类似。然而,现有的计算方法在不考虑文本的情况下将整个音频聚合在一起,例如平均集合在框架上,这可能将特定文本中未描述的误导音频信息编码起来。在本文中,我们为TAR提出了一个文本认知集中模块(TAP),该模块基本上是一个用于处理其最语义相似框架的文本的缩放点产品关注点。此外,以往的方法只对每个单面检索进行软模,忽略潜在的交叉检索信息。通过探索每个文本-音频配对的内在前端,我们引入了先前经过修订的矩阵(PMR)损失,以高(或低)文本到音频-文字的低(或高)音频-文字相似的分数来过滤硬体,从而实现双重最佳匹配。实验显示,我们的TAP显著地超越了各种文本-敏感集合功能,忽略潜在的交叉检索信息。此外,我们的数据损耗损率也保持稳定。</s>

0
下载
关闭预览

相关内容

NeurlPS 2022 | 自然语言处理相关论文分类整理
专知会员服务
48+阅读 · 2022年10月2日
专知会员服务
123+阅读 · 2020年9月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2023年5月3日
Arxiv
14+阅读 · 2022年8月25日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员