In this paper, we present an algorithm which lies in the domain of task allocation for a set of static autonomous radars with rotating antennas. It allows a set of radars to allocate in a fully decentralized way a set of active tracking tasks according to their location, considering that a target can be tracked by several radars, in order to improve accuracy with which the target is tracked. The allocation algorithm proceeds through a collaborative and fully decentralized auction protocol, using a collaborative auction protocol (Consensus Based Bundle Auction algorithm). Our algorithm is based on a double use of our allocation protocol among the radars. The latter begin by allocating targets, then launch a second round of allocation if theyhave resources left, in order to improve accuracy on targets already tracked. Our algorithm is also able to adapt to dynamism, i.e. to take into account the fact that the targets are moving and that the radar(s) most suitable for Tracking them changes as the mission progresses. To do this, the algorithm is restarted on a regular basis, to ensure that a bid made by a radar can decrease when the target moves away from it. Since our algorithm is based on collaborative auctions, it does not plan the following rounds, assuming that the targets are not predictable enough for this. Our algorithm is however based on radars capable of anticipating the positions of short-term targets, thanks to a Kalman filter. The algorithm will be illustrated based on a multi-radar tracking scenario where the radars, autonomous, must follow a set of targets in order to reduce the position uncertainty of the targets. Standby aspects will not be considered in this scenario. It is assumed that the radars can pick up targets in active pursuit, with an area ofuncertainty corresponding to their distance.


翻译:在本文中,我们展示了一套属于一组带有旋转天天的静静自主雷达任务分配域的算法。它使一组雷达能够以完全分散的方式,根据目标位置分配一套主动跟踪任务,以完全分散的方式,根据目标的位置分配一套主动跟踪任务,同时考虑到一个目标可以由几个雷达跟踪,以提高目标跟踪的准确性。分配算法通过合作和完全分散的拍卖协议,使用合作的拍卖协议(Consensus Bundle Bundle Abaction 算算)进行。我们的算法的基础是在雷达之间使用我们分配协议的双重使用。后者以分配目标为起点,然后如果雷达资源剩余,则以完全分散的方式分配一套完全分散的方式分配一套主动跟踪任务,以便根据它们的位置,考虑到目标正在移动,而且最适合跟踪目标变化的雷达协议通过合作和完全分散的拍卖程序进行。为此,必须定期调整算算算,以确保在目标偏离时雷达的出价程不会减少。由于我们的远程目标的远程定位,如果它们有剩余资源,则启动第二轮分配,因为我们的算算算算的,因此, 一定的里程的里程的里程的里程。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员