Source camera identification tools assist image forensic investigators to associate an image in question with a suspect camera. Various techniques have been developed based on the analysis of the subtle traces left in the images during the acquisition. The Photo Response Non Uniformity (PRNU) noise pattern caused by sensor imperfections has been proven to be an effective way to identify the source camera. The existing literature suggests that the PRNU is the only fingerprint that is device-specific and capable of identifying the exact source device. However, the PRNU is susceptible to camera settings, image content, image processing operations, and counter-forensic attacks. A forensic investigator unaware of counter-forensic attacks or incidental image manipulations is at the risk of getting misled. The spatial synchronization requirement during the matching of two PRNUs also represents a major limitation of the PRNU. In recent years, deep learning based approaches have been successful in identifying source camera models. However, the identification of individual cameras of the same model through these data-driven approaches remains unsatisfactory. In this paper, we bring to light the existence of a new robust data-driven device-specific fingerprint in digital images which is capable of identifying the individual cameras of the same model. It is discovered that the new device fingerprint is location-independent, stochastic, and globally available, which resolve the spatial synchronization issue. Unlike the PRNU, which resides in the high-frequency band, the new device fingerprint is extracted from the low and mid-frequency bands, which resolves the fragility issue that the PRNU is unable to contend with. Our experiments on various datasets demonstrate that the new fingerprint is highly resilient to image manipulations such as rotation, gamma correction, and aggressive JPEG compression.


翻译:图像相机识别工具协助图像法证调查员将有关图像与可疑的相机联系起来。根据对购置图像中留下的细微痕迹的分析,开发了各种技术。传感器不完善造成的照片反应不统一(PRNU)噪声模式被证明是识别源相机的有效方法。现有文献表明,PNU是唯一有特定装置的指纹,能够识别精确源设备。然而,PRNU很容易受到相机设置、图像内容、图像处理操作和反法医袭击的影响。一名不了解反敏感攻击或附带图像操纵的法医调查员有被误导的危险。匹配两个PRNU过程中的空间同步要求也是PRNU的一大限制。近年来,基于深层次学习的方法成功地识别了源相机模型。然而,通过这些数据驱动的方法识别同一模型的单个相机仍然不能令人满意。在本文中,我们可以看到在数字图像中存在新的、由稳定数据驱动的精确度特定指纹指纹,能够识别不同频率的直径比的图像,在高清晰度上发现了高清晰度的直径的直径、高清晰度的直径、高清晰度的直径比、高清晰度的直径直径、高分辨率的直径直径直至甚、直径直径直径直径直至甚。

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
150+阅读 · 2019年10月12日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Arxiv
9+阅读 · 2021年2月25日
Arxiv
45+阅读 · 2019年12月20日
Arxiv
5+阅读 · 2019年2月28日
Efficient and Effective $L_0$ Feature Selection
Arxiv
5+阅读 · 2018年8月7日
Arxiv
3+阅读 · 2018年4月10日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
25+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
CCF A类 | 顶级会议RTSS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年4月17日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
视觉机械臂 visual-pushing-grasping
CreateAMind
3+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
Top
微信扫码咨询专知VIP会员