Understanding individual customers' sensitivities to prices, promotions, brand, and other aspects of the marketing mix is fundamental to a wide swath of marketing problems, including targeting and pricing. Companies that operate across many product categories have a unique opportunity, insofar as they can use purchasing data from one category to augment their insights in another. Such cross-category insights are especially crucial in situations where purchasing data may be rich in one category, and scarce in another. An important aspect of how consumers behave across categories is dynamics: preferences are not stable over time, and changes in individual-level preference parameters in one category may be indicative of changes in other categories, especially if those changes are driven by external factors. Yet, despite the rich history of modeling cross-category preferences, the marketing literature lacks a framework that flexibly accounts for \textit{correlated dynamics}, or the cross-category interlinkages of individual-level sensitivity dynamics. In this work, we propose such a framework, leveraging individual-level, latent, multi-output Gaussian processes to build a nonparametric Bayesian choice model that allows information sharing of preference parameters across customers, time, and categories. We apply our model to grocery purchase data, and show that our model detects interesting dynamics of customers' price sensitivities across multiple categories. Managerially, we show that capturing correlated dynamics yields substantial predictive gains, relative to benchmarks. Moreover, we find that capturing correlated dynamics can have implications for understanding changes in consumers preferences over time, and developing targeted marketing strategies based on those dynamics.
翻译:了解个体客户对价格、促销、品牌和营销组合其他方面的敏感度,对于包括目标选择和定价在内的广泛的营销问题来说,至关重要的是了解个体客户对价格、促销、品牌和营销组合的其他方面的敏感度。 在许多产品类别中运作的公司都有一个独特的机会,因为它们可以使用从一个类别购买数据来增加对另一个类别的深入了解。 这种跨类别的洞察力对于购买数据可能在一个类别中十分丰富,而在另一个类别中则十分稀少的情况尤为关键。 消费者不同类别之间行为方式的一个重要方面是动态:各种偏好在一段时间内并不稳定,某一类别中个人一级优惠偏好度的变化可能表明其他类别的变化,特别是这些变化是由外部因素驱动的。 然而,尽管有丰富的跨类别偏好模式的历史,但营销文献却缺乏一个能够灵活地说明某个类别的数据来增加对另一个类别的数据。 在这项工作中,我们提出这样一个框架,即利用个人级别、潜值、多值高值高值程序来构建一个非分数的巴伊斯选择模式,从而可以显示其他类别的变化,特别是如果这些变化是由外部因素驱动的。 然而,营销文献文献缺乏一个框架,我们用来显示我们购买数据的模型,从而显示我们掌握着大量价格趋势的模型,从而能反映。