Variational autoencoder (VAE) is a very popular and well-investigated generative model vastly used in neural learning research. To leverage VAE in practical tasks dealing with a massive dataset of large dimensions it is required to deal with the difficulty of building low variance evidence lower bounds (ELBO). Markov ChainMonte Carlo (MCMC) is one of the effective approaches to tighten the ELBO for approximating the posterior distribution. Hamiltonian Variational Autoencoder(HVAE) is an effective MCMC inspired approach for constructing a low-variance ELBO which is also amenable to the reparameterization trick. In this work, we propose a Quasi-symplectic Langevin Variational autoencoder (Langevin-VAE) by incorporating the gradients information in the inference process through the Langevin dynamic. We show the effectiveness of the proposed approach by toy and real-world examples.


翻译:在神经学习研究中广泛使用的一种非常受欢迎和调查良好的基因模型(VAE)是一种非常受欢迎和调查良好的基因模型。为了利用VAE处理大量大型数据集的实际任务,需要它处理建立低差异证据下下限的困难。Markov 链-Monte Carlo(MCMC)是收紧ELBO以近似于后体分布的有效办法之一。汉密尔顿 variational Autencoder(HVAE)是一种有效的MCMC启发性方法,用以构建一种低差异ELBO,这个方法也适合重新计量的技巧。在这项工作中,我们提议通过Langevin动力将梯度信息纳入推导过程,从而形成一个“准-同步”的Langevin-VAE自动电算器(Langevin-VAE),我们通过玩具和现实世界实例展示了拟议方法的有效性。

0
下载
关闭预览

相关内容

不可错过!华盛顿大学最新《生成式模型》课程,附PPT
专知会员服务
63+阅读 · 2020年12月11日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
GAN新书《生成式深度学习》,Generative Deep Learning,379页pdf
专知会员服务
202+阅读 · 2019年9月30日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
10+阅读 · 2018年3月23日
Arxiv
6+阅读 · 2018年3月12日
Arxiv
3+阅读 · 2018年1月10日
VIP会员
相关资讯
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【NIPS2018】接收论文列表
专知
5+阅读 · 2018年9月10日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员