This work studies the spectral convergence of graph Laplacian to the Laplace-Beltrami operator when the graph affinity matrix is constructed from $N$ random samples on a $d$-dimensional manifold embedded in a possibly high dimensional space. By analyzing Dirichlet form convergence and constructing candidate approximate eigenfunctions via convolution with manifold heat kernel, we prove that, with Gaussian kernel, one can set the kernel bandwidth parameter $\epsilon \sim (\log N/ N)^{1/(d/2+2)}$ such that the eigenvalue convergence rate is $N^{-1/(d/2+2)}$ and the eigenvector convergence in 2-norm has rate $N^{-1/(d+4)}$; When $\epsilon \sim (\log N/N)^{1/(d/2+3)}$, both eigenvalue and eigenvector rates are $N^{-1/(d/2+3)}$. These rates are up to a $\log N$ factor and proved for finitely many low-lying eigenvalues. The result holds for un-normalized and random-walk graph Laplacians when data are uniformly sampled on the manifold, as well as the density-corrected graph Laplacian (where the affinity matrix is normalized by the degree matrix from both sides) with non-uniformly sampled data. As an intermediate result, we prove new point-wise and Dirichlet form convergence rates for the density-corrected graph Laplacian. Numerical results are provided to verify the theory.


翻译:这项工作研究图 Laplacecian 与 Laplace- Beltrami 操作器的光谱融合, 当图形亲近性矩阵由位于可能高维空间中嵌入的美元方元元元元体的随机样本构建时, 图形亲近性矩阵的光谱融合。 通过分析 Dirichlet 的趋同形式, 并通过多热内核熔化来构建候选的近似电子元元元元元元元元元元功能; 当 Gaussian 内核( log N/ N) 1/ (d/2+3) 时, 我们证明, 有了 Gausian 内核素带带带的内核带带带带参数 $\ epsilon \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ( d \ \ \ \ \ \ \ \ \ \ \ \ \ ( d \ \ \ \ \ \ \ \ \ \ \ \ \ \ ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
0+阅读 · 2022年8月16日
VIP会员
相关VIP内容
不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
专知会员服务
26+阅读 · 2021年4月2日
专知会员服务
51+阅读 · 2020年12月14日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
105+阅读 · 2019年10月9日
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员