We are interested in the quantitative analysis of the compaction ratio for two classical families of trees: recursive trees and plane binary increasing trees. These families are typical representatives of tree models with a small depth. Once a tree of size $n$ is compacted by keeping only one occurrence of all fringe subtrees appearing in the tree the resulting graph contains only $O(n / \ln n)$ nodes. This result must be compared to classical results of compaction in the families of simply generated trees, where the analogous result states that the compacted structure is of size of order $n / \sqrt{\ln n}$. The result about the plane binary increasing trees has already been proved, but we propose a new and generic approach to get the result. Finally, an experimental study is presented, based on a prototype implementation of compacted binary search trees that are modeled by plane binary increasing trees.


翻译:我们感兴趣的是对两个古典树系的缩压比率进行定量分析:循环树和平面的二进制树。这些家庭是树型的典型代表,其深度小。一旦一棵大小为$n的树被压缩,只保留了树上所有边缘亚树的一例,所产生的图只包含$O(n / $n n) 的节点。这一结果必须与简单产生的树系的缩压的典型结果相比较,类似结果显示,缩压结构的大小为$/\ sqrt\ n}美元。平面二进制树的结果已经得到证明,但我们提出了取得结果的新的通用方法。最后,根据用平面双进树建模的缩压的两进制搜索树的原型进行了一项实验性研究。

0
下载
关闭预览

相关内容

【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月3日
Arxiv
0+阅读 · 2021年11月1日
Arxiv
0+阅读 · 2021年11月1日
VIP会员
相关VIP内容
【斯坦福Jiaxuan You】图学习在金融网络中的应用,24页ppt
专知会员服务
43+阅读 · 2021年9月19日
【KDD2021】图神经网络,NUS- Xavier Bresson教授
专知会员服务
62+阅读 · 2021年8月20日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
学术报告|UCLA副教授孙怡舟博士
科技创新与创业
9+阅读 · 2019年6月18日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
五个精彩实用的自然语言处理资源
机器学习研究会
6+阅读 · 2018年2月23日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
Top
微信扫码咨询专知VIP会员