In this work, we investigate Gaussian process regression used to recover a function based on noisy observations. We derive upper and lower error bounds for Gaussian process regression with possibly misspecified correlation functions. The optimal convergence rate can be attained even if the smoothness of the imposed correlation function exceeds that of the true correlation function and the sampling scheme is quasi-uniform. As byproducts, we also obtain convergence rates of kernel ridge regression with misspecified kernel function, where the underlying truth is a deterministic function. The convergence rates of Gaussian process regression and kernel ridge regression are closely connected, which is aligned with the relationship between sample paths of Gaussian process and the corresponding reproducing kernel Hilbert space.
翻译:在这项工作中,我们调查高森进程回归过程用来恢复基于噪音观测的函数。 我们得出高森进程回归的上下误差界限, 并可能错误指定相关函数。 即使强制相关函数的平稳性超过真正的相关函数, 取样方案也半一致, 也能够达到最佳趋同率。 作为副产品, 我们还获得了内核脊回归与错误指定的内核函数的趋同率, 其中基本真理是一种确定性函数。 高森进程回归和内核脊回归的趋同率是紧密相连的, 这与高森进程和相应再生内核希尔伯特空间的抽样路径之间的关系是一致的。