In this paper we study probabilistic and neural network approximations for solutions to Poisson equation subject to H\" older data in general bounded domains of $\mathbb{R}^d$. We aim at two fundamental goals. The first, and the most important, we show that the solution to Poisson equation can be numerically approximated in the sup-norm by Monte Carlo methods, { and that this can be done highly efficiently if we use a modified version} of the walk on spheres algorithm { as an acceleration method. This provides estimates which are efficient with respect to the prescribed approximation error and with polynomial complexity in the dimension and the reciprocal of the error.} {A crucial feature is that} the overall number of samples does not not depend on the point at which the approximation is performed. As a second goal, we show that the obtained Monte Carlo solver renders { in a constructive way} ReLU deep neural network (DNN) solutions to Poisson problem, whose sizes depend at most polynomialy in the dimension $d$ and in the desired error. In fact we show that the random DNN provides with high probability a small approximation error and low polynomial complexity in the dimension.
翻译:暂无翻译