Capsule Networks, as alternatives to Convolutional Neural Networks, have been proposed to recognize objects from images. The current literature demonstrates many advantages of CapsNets over CNNs. However, how to create explanations for individual classifications of CapsNets has not been well explored. The widely used saliency methods are mainly proposed for explaining CNN-based classifications; they create saliency map explanations by combining activation values and the corresponding gradients, e.g., Grad-CAM. These saliency methods require a specific architecture of the underlying classifiers and cannot be trivially applied to CapsNets due to the iterative routing mechanism therein. To overcome the lack of interpretability, we can either propose new post-hoc interpretation methods for CapsNets or modifying the model to have build-in explanations. In this work, we explore the latter. Specifically, we propose interpretable Graph Capsule Networks (GraCapsNets), where we replace the routing part with a multi-head attention-based Graph Pooling approach. In the proposed model, individual classification explanations can be created effectively and efficiently. Our model also demonstrates some unexpected benefits, even though it replaces the fundamental part of CapsNets. Our GraCapsNets achieve better classification performance with fewer parameters and better adversarial robustness, when compared to CapsNets. Besides, GraCapsNets also keep other advantages of CapsNets, namely, disentangled representations and affine transformation robustness.


翻译:Capsule Network作为进化神经网络的替代物,已经提出要识别图像中的物体。目前的文献显示CapsNets比CNNs有许多优势。然而,还没有很好地探索如何为CapsNets的个人分类作出解释。广泛使用的突出方法主要是为了解释CNN的分类;它们通过结合激活值和相应的梯度(如Grad-CAM)来创建突出的地图解释。这些突出的方法需要基础分类器的具体结构,不能被轻描淡写地应用于CapsNets。由于CapsNets的迭接性机制,因此不能将CapsNets的许多优点应用于CapsNets。为了克服缺乏解释性,我们可以为CapsNetsNets提出新的热后解释方法,或者修改模型进行构建解释。在这项工作中,我们探讨后者。具体地说,我们提出了可解释的图形网络网络(GracsNets)网络(GrabesNets),我们用多头、稳健的图集组合方法取代路段。在拟议的模型中,个人分类解释解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性解释性网络的模型可以有效,也可以用来取代了Caps capscapealbs caps brealbislationalbs caps caps caps brealbs breal cap capealbalbal cap caps caps capsalbalbild cap caps caps caps caps caps caps caps caps caps caps caps caps prealbs cap capeal cal cal cal cal cal cap capsal cal cal cap capsalb caps capsalb capsal cal capal cap capeal cap capeal capsal cal cal cal capal cap capeal cap caps)。

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2021年4月1日
【AAAI2021】可解释图胶囊网络物体检测
专知会员服务
27+阅读 · 2021年1月4日
Capsule Networks,胶囊网络,57页ppt,布法罗大学
专知会员服务
67+阅读 · 2020年2月29日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Capsule Networks教程
全球人工智能
10+阅读 · 2017年11月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Interpretable CNNs for Object Classification
Arxiv
20+阅读 · 2020年3月12日
Local Relation Networks for Image Recognition
Arxiv
4+阅读 · 2019年4月25日
Arxiv
5+阅读 · 2018年3月30日
Arxiv
4+阅读 · 2017年11月14日
Arxiv
4+阅读 · 2017年11月13日
VIP会员
相关资讯
深度神经网络压缩和加速相关最全资源分享
深度学习与NLP
3+阅读 · 2019年7月5日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Python机器学习教程资料/代码
机器学习研究会
8+阅读 · 2018年2月22日
Capsule Networks教程
全球人工智能
10+阅读 · 2017年11月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
Top
微信扫码咨询专知VIP会员