How is information processed in the brain during perception? Mechanistic insight is achieved only when experiments are employed to test formal or computational models. In analogy to lesion studies, phantom perception may serve as a vehicle to understand the fundamental processing principles underlying auditory perception. With a special focus on tinnitus -- as the prime example of auditory phantom perception -- we review recent work at the intersection of artificial intelligence, psychology, and neuroscience. In particular, we discuss why everyone with tinnitus suffers from hearing loss, but not everyone with hearing loss suffers from tinnitus. We argue that the increase of sensory precision due to Bayesian inference could be caused by intrinsic neural noise and lead to a prediction error in the cerebral cortex. Hence, two fundamental processing principles - being ubiquitous in the brain - provide the most explanatory power for the emergence of tinnitus: predictive coding as a top-down, and stochastic resonance as a complementary bottom-up mechanism. We conclude that both principles play a crucial role in healthy auditory perception.
翻译:大脑在感知过程中如何处理信息? 只有当实验用于测试正规模型或计算模型时,才能实现机械洞察。 类比于损伤研究,幻影洞察可成为理解基本处理原理的工具。 以耳鸣 -- -- 作为听觉幽灵感知的典型例子 -- -- 我们特别关注耳鸣 -- -- 作为听觉幻觉感知的典型例子 -- -- 我们审查最近在人工智能、心理学和神经科学交汇处的工作。 特别是,我们讨论为什么有耳鸣的每个人都会听不见,但并不是所有听不见的人都会听不见的。我们认为,由于贝耶斯人的推断,感知觉精确度的增加可能是内在神经噪音造成的,并导致脑皮层的预测错误。 因此,两种基本处理原理 -- -- 大脑中普遍存在 -- -- 提供了出现听觉知觉的最解释性的力量:预测自上而下调,以及作为补充自下机制的随机共振共振。 我们的结论是,这两项原则在健康听觉感觉中起着关键作用。