We study dynamic matching in a spatial setting. Drivers are distributed at random on some interval. Riders arrive in some (possibly adversarial) order at randomly drawn points. The platform observes the location of the drivers, and can match newly arrived riders immediately, or can wait for more riders to arrive. Unmatched riders incur a waiting cost $c$ per period. The platform can match riders and drivers, irrevocably. The cost of matching a driver to a rider is equal to the distance between them. We quantify the value of slightly increasing supply. We prove that when there are $(1+\epsilon)$ drivers per rider (for any $\epsilon > 0$), the cost of matching returned by a simple greedy algorithm which pairs each arriving rider to the closest available driver is $O(\log^3(n))$, where $n$ is the number of riders. On the other hand, with equal number of drivers and riders, even the \emph{ex post} optimal matching does not have a cost less than $\Theta(\sqrt{n})$. Our results shed light on the important role of (small) excess supply in spatial matching markets.
翻译:我们在一个空间环境中研究动态匹配。 驱动器在某个间隔内随机分配。 驱动器在随机抽取点到达某些( 可能是对抗性) 顺序。 平台观察驱动器的位置, 并可以立即匹配新到的骑手, 或者可以等待更多骑手到达。 不匹配的骑手每个时期需要等待费用为c美元。 平台可以不可撤销地匹配骑手和驾驶员。 将驱动器与驾驶员匹配的成本与驾驶员之间的距离相等。 我们量化了略有增加的供应值。 我们证明, 当每个骑手( $ > $\ epsilon) 的司机( $ > 0 ) 时, 平台可以观察, 并且可以立即匹配每个到达的骑手与最接近的驾驶员之间的匹配成本是$O(\ log% 3 (n) 。 美元是骑手的数量。 另一方面, 与同样数量的驾驶员和骑手, 甚至是\ emph{ ex pos} 最佳匹配的成本不会低于 $ the light $theta (\ sqrml) resml) implain resmess relight.