Model card reports provide a transparent description of machine learning models which includes information about their evaluation, limitations, intended use, etc. Federal health agencies have expressed an interest in model cards report for research studies using machine-learning based AI. Previously, we have developed an ontology model for model card reports to structure and formalize these reports. In this paper, we demonstrate a Java-based library (OWL API, FaCT++) that leverages our ontology to publish computable model card reports. We discuss future directions and other use cases that highlight applicability and feasibility of ontology-driven systems to support FAIR challenges.
翻译:模型卡报告提供了机器学习模型的透明描述,其中包括它们的评估、限制、预期用途等信息。联邦卫生机构对使用基于机器学习的人工智能的研究研究的模型卡报告表示了兴趣。我们之前已经开发了一个模型卡报告的本体模型,用来结构化和正式化这些报告。在本文中,我们展示了一种基于Java的库(OWL API、FaCT ++),利用我们的本体来发布可计算的模型卡报告。我们讨论了未来的方向和其他应用案例,以突显本体驱动系统支持FAIR挑战的适用性和可行性。