Sea fog significantly threatens the safety of maritime activities. This paper develops a sea fog dataset (SFDD) and a dual branch sea fog detection network (DB-SFNet). We investigate all the observed sea fog events in the Yellow Sea and the Bohai Sea (118.1{\deg}E-128.1{\deg}E, 29.5{\deg}N-43.8{\deg}N) from 2010 to 2020, and collect the sea fog images for each event from the Geostationary Ocean Color Imager (GOCI) to comprise the dataset SFDD. The location of the sea fog in each image in SFDD is accurately marked. The proposed dataset is characterized by a long-time span, large number of samples, and accurate labeling, that can substantially improve the robustness of various sea fog detection models. Furthermore, this paper proposes a dual branch sea fog detection network to achieve accurate and holistic sea fog detection. The poporsed DB-SFNet is composed of a knowledge extraction module and a dual branch optional encoding decoding module. The two modules jointly extracts discriminative features from both visual and statistical domain. Experiments show promising sea fog detection results with an F1-score of 0.77 and a critical success index of 0.63. Compared with existing advanced deep learning networks, DB-SFNet is superior in detection performance and stability, particularly in the mixed cloud and fog areas.
翻译:本文开发了一个海雾数据集(SDFD)和一个双分支海雾探测网络(DB-SFNet),我们调查了2010年至2020年期间黄海和博海的所有观察到的海雾事件(118.1(deg)E-128.1(deg}E),29.5(deg}N-43.8(deg}N)),收集了从对地静止海洋彩色成像仪(GOCI)为每个事件的海雾图像,以组成数据集SDFDD。SDF每张图像中海雾的位置都有准确的标记。拟议数据集的特点是长时期、大量样本和准确的标签,可以大大改善各种海雾探测模型的稳健性。此外,本文还提议建立一个双分支海雾探测网络,以准确和整体的海雾探测。DB-SFNet由知识提取模块和双分支可选编码解码模块组成。两个模块共同从视觉和统计领域特别提取有区别性特征的图像和统计领域,有大量样本和准确的标签。实验显示在GLALISM 和GLISM 的高级探测领域有令人乐观的精确的探险结果。