Recently, \textit{passive behavioral biometrics} (e.g., gesture or footstep) have become promising complements to conventional user identification methods (e.g., face or fingerprint) under special situations, yet existing sensing technologies require lengthy measurement traces and cannot identify multiple users at the same time. To this end, we propose \systemname\ as a passive multi-person identification system leveraging deep learning enabled footstep separation and recognition. \systemname\ passively identifies a user by deciphering the unique "footprints" in its footstep. Different from existing gait-enabled recognition systems incurring a long sensing delay to acquire many footsteps, \systemname\ can recognize a person by as few as only one step, substantially cutting the identification latency. To make \systemname\ adaptive to walking pace variations, environmental dynamics, and even unseen targets, we apply an adversarial learning technique to improve its domain generalisability and identification accuracy. Finally, \systemname\ can defend itself against replay attack, enabled by the richness of footstep and spatial awareness. We implement a \systemname\ prototype using commodity hardware and evaluate it in typical indoor settings. Evaluation results demonstrate a cross-domain identification accuracy of over 90\%.
翻译:最近, \ textit{ 被动行为生物鉴别 } (例如手势或脚步) 在特殊情况下, 成为传统用户识别方法( 如脸或指纹) 的很有希望的补充, 但现有的遥感技术需要长时间的测量痕迹, 无法同时识别多个用户。 为此, 我们提议 \ systename\ 是一个被动的多人识别系统, 利用深学习的助步步分离和识别。\ systemname\ 被动识别用户, 在其脚步中破解了独特的“ 脚印 ” 。 不同于现有的运动辅助识别系统, 导致长期的感知延迟以获取许多脚步迹,\ systemname\ 可以将一个人识别为少数, 仅是一个步骤, 大大缩短识别时间。 为了让\ systemname\ 适应步步步步步步变、 环境动态甚至看不见的目标, 我们应用对抗性学习技术来改进它的域的广度和识别准确性。 最后,\ systemename\ 可以保护自己不受重弹攻击, 受足足迹和空间意识的丰富程度的制约。 我们用90 的系统识别系统名称的原型定位在典型的硬件中测试中进行测试。