Deep learning has achieved great success in learning features from massive remote sensing images (RSIs). To better understand the connection between feature learning paradigms (e.g., unsupervised feature learning (USFL), supervised feature learning (SFL), and self-supervised feature learning (SSFL)), this paper analyzes and compares them from the perspective of feature learning signals, and gives a unified feature learning framework. Under this unified framework, we analyze the advantages of SSFL over the other two learning paradigms in RSIs understanding tasks and give a comprehensive review of the existing SSFL work in RS, including the pre-training dataset, self-supervised feature learning signals, and the evaluation methods. We further analyze the effect of SSFL signals and pre-training data on the learned features to provide insights for improving the RSI feature learning. Finally, we briefly discuss some open problems and possible research directions.
翻译:深层学习在从大规模遥感图像中学习特征方面取得了巨大成功。为了更好地了解特征学习模式(例如未受监督的特征学习(USFL)、受监督的特征学习(SFL)、自监督的特征学习(SSFL))与自监督的特征学习(SSFL)之间的联系,本文件从特征学习信号的角度分析和比较了这些特征,并提供了一个统一的特征学习框架。在这个统一的框架下,我们分析了SSFL相对于登记册机构理解任务中其他两个学习模式的优势,并全面审查了塞族共和国现有的SSFL工作,包括培训前数据集、自监督的特征学习信号和评价方法。我们进一步分析了SSFL信号和训练前数据对所学特征的影响,以便为改进区域基础设施特征学习提供洞察力。最后,我们简要讨论了一些公开的问题和可能的研究方向。