Popular network pruning algorithms reduce redundant information by optimizing hand-crafted models, and may cause suboptimal performance and long time in selecting filters. We innovatively introduce adaptive exemplar filters to simplify the algorithm design, resulting in an automatic and efficient pruning approach called EPruner. Inspired by the face recognition community, we use a message passing algorithm Affinity Propagation on the weight matrices to obtain an adaptive number of exemplars, which then act as the preserved filters. EPruner breaks the dependency on the training data in determining the "important" filters and allows the CPU implementation in seconds, an order of magnitude faster than GPU based SOTAs. Moreover, we show that the weights of exemplars provide a better initialization for the fine-tuning. On VGGNet-16, EPruner achieves a 76.34%-FLOPs reduction by removing 88.80% parameters, with 0.06% accuracy improvement on CIFAR-10. In ResNet-152, EPruner achieves a 65.12%-FLOPs reduction by removing 64.18% parameters, with only 0.71% top-5 accuracy loss on ILSVRC-2012. Our code can be available at https://github.com/lmbxmu/EPruner.


翻译:大众网络运行算法通过优化手工艺模型来减少冗余信息,并可能导致亚最佳性能和选择过滤器的时间长。 我们创新地引入适应性示范过滤器来简化算法设计,导致自动和高效的修剪方法,称为 EPruner 。 在面部识别界的启发下,我们在重量矩阵上使用传递信息算法Affinity propaggation, 以获得一个适应性化成像仪的数量, 然后再作为保存过滤器。 EPruner打破了在确定“重要”过滤器时对培训数据的依赖,允许在秒内执行CPU, 其规模比基于 GPU 的 SOTAs要快。 此外,我们展示了Exemplators的重量为微调提供了更好的初始化。 在 VGGNet-16 上, EPrunerner通过去除88.80%的参数,使CIFAR-10的精确度提高0.06%。 在ResNet-152 中, EPurner在确定“重要”过滤器在65.12%-FLOPs 5 % 的精确度上通过消除了我们IVLSM/

0
下载
关闭预览

相关内容

【Google】平滑对抗训练,Smooth Adversarial Training
专知会员服务
49+阅读 · 2020年7月4日
【ICLR 2019】双曲注意力网络,Hyperbolic  Attention Network
专知会员服务
83+阅读 · 2020年6月21日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
[CVPR 2020-港中文-MIT] 神经架构搜索鲁棒性
专知会员服务
26+阅读 · 2020年4月7日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Arxiv
5+阅读 · 2020年3月16日
Attention Network Robustification for Person ReID
Arxiv
5+阅读 · 2019年10月15日
Arxiv
12+阅读 · 2019年4月9日
VIP会员
相关VIP内容
相关资讯
图像处理:从 bilateral filter 到 HDRnet
极市平台
30+阅读 · 2019年8月7日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Dynamic Zoom-in Network 论文笔记
统计学习与视觉计算组
6+阅读 · 2018年7月18日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Sparsifying Neural Network Connections for Face Recognition
统计学习与视觉计算组
7+阅读 · 2017年6月10日
Top
微信扫码咨询专知VIP会员