Conventional automatic speech recognition systems do not produce punctuation marks which are important for the readability of the speech recognition results. They are also needed for subsequent natural language processing tasks such as machine translation. There have been a lot of works on punctuation prediction models that insert punctuation marks into speech recognition results as post-processing. However, these studies do not utilize acoustic information for punctuation prediction and are directly affected by speech recognition errors. In this study, we propose an end-to-end model that takes speech as input and outputs punctuated texts. This model is expected to predict punctuation robustly against speech recognition errors while using acoustic information. We also propose to incorporate an auxiliary loss to train the model using the output of the intermediate layer and unpunctuated texts. Through experiments, we compare the performance of the proposed model to that of a cascaded system. The proposed model achieves higher punctuation prediction accuracy than the cascaded system without sacrificing the speech recognition error rate. It is also demonstrated that the multi-task learning using the intermediate output against the unpunctuated text is effective. Moreover, the proposed model has only about 1/7th of the parameters compared to the cascaded system.


翻译:常规自动语音识别系统不会产生对语音识别结果可读性十分重要的点点标记, 这对于随后自然语言处理工作, 如机器翻译等 也需要这些点点点预测模型。 在标点预测模型上, 将标点标记标记插入语音识别结果, 作为后处理。 但是, 这些研究没有利用声学信息进行标点预测, 并且直接受到语音识别错误的影响 。 在这次研究中, 我们提议了一个端到端模型, 将语音识别结果作为输入和输出的点点点点点符号。 这个模型预计将在使用声学信息的同时, 预测语言识别错误的点点数。 我们还提议纳入一个辅助性损失模型, 以便用中间层的输出和未标点数的文本来培训模型。 我们通过实验, 将拟议模型的性能与级联系统的性能进行比较。 拟议的模型在不牺牲语音识别误差率的情况下实现比级联系统更高的点点预测准确度。 它还表明, 拟议的多任务模型学习使用中间输出, 与比较的级联1 参数相比, 有效。

0
下载
关闭预览

相关内容

语音识别是计算机科学和计算语言学的一个跨学科子领域,它发展了一些方法和技术,使计算机可以将口语识别和翻译成文本。 它也被称为自动语音识别(ASR),计算机语音识别或语音转文本(STT)。它整合了计算机科学,语言学和计算机工程领域的知识和研究。
专知会员服务
45+阅读 · 2020年10月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
20+阅读 · 2020年6月8日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Arxiv
13+阅读 · 2019年11月14日
AutoML: A Survey of the State-of-the-Art
Arxiv
70+阅读 · 2019年8月14日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员