Is self-supervised deep learning (DL) for medical image analysis already a serious alternative to the de facto standard of end-to-end trained supervised DL? We tackle this question for medical image classification, with a particular focus on one of the currently most limiting factors of the field: the (non-)availability of labeled data. Based on three common medical imaging modalities (bone marrow microscopy, gastrointestinal endoscopy, dermoscopy) and publicly available data sets, we analyze the performance of self-supervised DL within the self-distillation with no labels (DINO) framework. After learning an image representation without use of image labels, conventional machine learning classifiers are applied. The classifiers are fit using a systematically varied number of labeled data (1-1000 samples per class). Exploiting the learned image representation, we achieve state-of-the-art classification performance for all three imaging modalities and data sets with only a fraction of between 1% and 10% of the available labeled data and about 100 labeled samples per class.
翻译:自监督深度学习(DL)在医学图像分析中已经成为端到端训练的监督式DL的一种严肃替代选择吗? 我们针对医学图像分类提出了这个问题,特别关注目前该领域最具限制性的因素之一:标记数据的(非)可用性。我们基于三种常见的医学成像模式(骨髓显微镜检查,胃肠道内窥镜检查和皮肤显微镜检查)和公开可用的数据集,在DINO(无标签自蒸馏)框架内分析了自监督DL的性能。在不使用图像标签学习图像表示之后,应用传统的机器学习分类器。使用系统地变化的标记数据数量(每类1-1000个样本)来拟合分类器。借助学习到的图像表示,我们在仅使用100个标记样本每类及约只有可用标记数据的1%至10%的情况下,为所有三种成像模式和数据集实现了最先进的分类性能。