Geostationary satellite imagery has applications in climate and weather forecasting, planning natural energy resources, and predicting extreme weather events. For precise and accurate prediction, higher spatial and temporal resolution of geostationary satellite imagery is important. Although recent geostationary satellite resolution has improved, the long-term analysis of climate applications is limited to using multiple satellites from the past to the present due to the different resolutions. To solve this problem, we proposed warp and refine network (WR-Net). WR-Net is divided into an optical flow warp component and a warp image refinement component. We used the TV-L1 algorithm instead of deep learning-based approaches to extract the optical flow warp component. The deep-learning-based model is trained on the human-centric view of the RGB channel and does not work on geostationary satellites, which is gray-scale one-channel imagery. The refinement network refines the warped image through a multi-temporal fusion layer. We evaluated WR-Net by interpolation of temporal resolution at 4 min intervals to 2 min intervals in large-scale GK2A geostationary meteorological satellite imagery. Furthermore, we applied WR-Net to the future frame prediction task and showed that the explicit use of optical flow can help future frame prediction.
翻译:为了准确准确预测,地球静止卫星图像的高度空间和时间分辨率十分重要。尽管最近对地球静止卫星的分辨率有所改善,但气候应用的长期分析仅限于使用过去和现在的多颗卫星,因为不同的分辨率不同。为了解决这个问题,我们建议对网络进行扭曲和改进。WR-Net分为光学流曲解部分和扭曲图像改进部分。我们利用电视-L1算法而不是深层次的基于学习的方法提取光学流曲解部分。基于深层次学习的模型经过了RGB频道以人为中心的视角的培训,而没有在地球静止卫星上工作,而地球静止卫星是灰状的单声道图像。改进的网络通过多时空聚变层来改进扭曲的图像。我们通过对时间分辨率的跨度以4分钟至2分钟的间距对网络进行了评估。我们还在大型GK2A地球静止气象卫星图像中使用了基于深层次学习的算法。此外,我们将基于深层次学习的模型用于对RGB频道以人为中心的观察,而不是对地球静止卫星进行工作,后者是灰状的一气流预测,我们可以对未来进行明确的光学预测。</s>