This manuscript gathers and subsumes a long series of works on using QW to simulate transport phenomena. Quantum Walks (QWs) consist of single and isolated quantum systems, evolving in discrete or continuous time steps according to a causal, shift-invariant unitary evolution in discrete space. We start reminding some necessary fundamentals of linear algebra, including the definitions of Hilbert space, tensor state, the definition of linear operator and then we briefly present the principles of quantum mechanics on which this thesis is grounded. After having reviewed the literature of QWs and the main historical approaches to their study, we then move on to consider a new property of QWs, the plasticity. Plastic QWs are those ones admitting both continuous time-discrete space and continuous spacetime time limit. We show that such QWs can be used to quantum simulate a large class of physical phenomena described by transport equations. We investigate this new family of QWs in one and two spatial dimensions, showing that in two dimensions, the PDEs we can simulate are more general and include dispersive terms. We show that the above results do not need to rely on the grid and we prove that such QW-based quantum simulators can be defined on 2-complex simplicia, i.e. triangular lattices. Finally, we extend the above result to any arbitrary triangulation, proving that such QWs coincide in the continuous limit to a transport equation on a general curved surface, including the curved Dirac equation in 2+1 spacetime dimensions.


翻译:此手稿收集并包含一系列关于使用 QW 模拟运输现象的长篇著作。 量子漫步( QWs) 由单项和孤立的量子系统组成, 根据离散空间的因果、 变化和变异的单一演进, 以离散空间的分解或连续时间步骤演变。 我们开始提醒线形代数的一些必要基本原理, 包括Hilbert 空间的定义、 Exor 状态、 线性操作者的定义, 然后我们简要地介绍此理论所基于的量子力学原理。 在审查了 QW 的文献及其研究的主要历史方法之后, 我们接着开始考虑 QWs 和 的三角曲线的新属性。 然后我们继续考虑 QWs 和 塑料的新的直径等值。 塑料 QW 是那些同时接受连续时间分解空间空间空间和连续时间时间限制的元素。 我们用这种QWs 来模拟运输的大型物理现象。 我们用一个和两个空基的新的量力组, 显示在两个维度上, 我们模拟的PDE是更一般的, 并且包含 QQ- 直径 直径的直径变方程式, 。 我们用直判判的直径对等的计算结果, 。 我们用在2 。 我们用直到直到直方程式 。

0
下载
关闭预览

相关内容

让 iOS 8 和 OS X Yosemite 无缝切换的一个新特性。 > Apple products have always been designed to work together beautifully. But now they may really surprise you. With iOS 8 and OS X Yosemite, you’ll be able to do more wonderful things than ever before.

Source: Apple - iOS 8
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Group-based Cryptography in the Quantum Era
Arxiv
0+阅读 · 2022年2月24日
Arxiv
0+阅读 · 2022年2月23日
Arxiv
0+阅读 · 2022年2月22日
Implicit Maximum Likelihood Estimation
Arxiv
7+阅读 · 2018年9月24日
Arxiv
4+阅读 · 2018年4月30日
VIP会员
相关VIP内容
Artificial Intelligence: Ready to Ride the Wave? BCG 28页PPT
专知会员服务
26+阅读 · 2022年2月20日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
50+阅读 · 2020年12月14日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【ICLR2020】图神经网络与图像处理,微分方程,27页ppt
专知会员服务
47+阅读 · 2020年6月6日
元学习与图神经网络逻辑推导,55页ppt
专知会员服务
128+阅读 · 2020年4月25日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员