In this work we propose the use of adaptive stochastic search as a building block for general, non-convex optimization operations within deep neural network architectures. Specifically, for an objective function located at some layer in the network and parameterized by some network parameters, we employ adaptive stochastic search to perform optimization over its output. This operation is differentiable and does not obstruct the passing of gradients during backpropagation, thus enabling us to incorporate it as a component in end-to-end learning. We study the proposed optimization module's properties and benchmark it against two existing alternatives on a synthetic energy-based structured prediction task, and further showcase its use in stochastic optimal control applications.
翻译:在这项工作中,我们提议使用适应性随机搜索作为深神经网络结构内一般非冷凝优化操作的构件。具体地说,对于位于网络某层并按某些网络参数参数参数参数参数设定的客观功能,我们采用适应性随机搜索来优化其输出。这一操作是可区分的,不会阻碍回馈过程中梯度的传承,从而使我们能够将它作为端到端学习的一个组成部分。我们研究了拟议的优化模块的特性,并根据基于合成能源的结构化预测任务中现有的两种替代方法对它进行基准,并进一步展示其在随机最佳控制应用中的用途。