It is well known that the classic Allen-Cahn equation satisfies the maximum bound principle (MBP), that is, the absolute value of its solution is uniformly bounded for all time by certain constant under suitable initial and boundary conditions. In this paper, we consider numerical solutions of the modified Allen-Cahn equation with a Lagrange multiplier of nonlocal and local effects, which not only shares the same MBP as the original Allen-Cahn equation but also conserves the mass exactly. We reformulate the model equation with a linear stabilizing technique, then construct first- and second-order exponential time differencing schemes for its time integration. We prove the unconditional MBP preservation and mass conservation of the proposed schemes in the time discrete sense and derive their error estimates under some regularity assumptions. Various numerical experiments in two and three dimensions are also conducted to verify the theoretical results.


翻译:众所周知,典型的Allen-Cahn方程式符合最大约束原则(MBP),即其解决方案的绝对值在适当的初始条件和边界条件下,始终一致地由某些常数在适当的初始条件和边界条件下加以约束。在本文中,我们考虑修改的Allen-Cahn方程式的数字解决方案,其中带有非当地和地方效应的拉格朗乘数,这些公式不仅与原Allen-Cahn方程式相同,而且准确保存质量。我们用线性稳定技术重新组合模型方程式,然后为时间整合制定第一和第二级指数时间差异计算法。我们证明在时间上无条件的MBP维护和大规模保存拟议方案,并在一些常规假设下得出其误差估计数。我们还进行了两个和三个层面的各种数字实验,以核实理论结果。

0
下载
关闭预览

相关内容

MASS:IEEE International Conference on Mobile Ad-hoc and Sensor Systems。 Explanation:移动Ad hoc和传感器系统IEEE国际会议。 Publisher:IEEE。 SIT: http://dblp.uni-trier.de/db/conf/mass/index.html
专知会员服务
26+阅读 · 2021年7月11日
专知会员服务
15+阅读 · 2021年5月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
VIP会员
相关VIP内容
专知会员服务
26+阅读 · 2021年7月11日
专知会员服务
15+阅读 · 2021年5月21日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
152+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
已删除
将门创投
8+阅读 · 2019年6月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员