An LSTM-aided hybrid random access scheme (LSTMH-RA) is proposed to support diverse quality of service (QoS) requirements in 6G machinetype communication (MTC) networks, where ultra-reliable low latency communications (URLLC) and massive MTC (mMTC) devices coexist. This scheme allows URLLC devices to access the network via a two-step contentionfree access procedure to satisfy latency and reliability access requirements, and mMTC devices to access the network via a contention-based timing advance (TA)-aided access procedure to meet massive access requirement. Furthermore, to reduce the latency of URLLC devices, we propose an attention-based LSTM prediction model to predict the number of active URLLC devices, and thus determining the parameters of the multi-user detection algorithm dynamically. We analyze the successful access probability of the LSTMH-RA scheme. Numerical results show that, compared to the benchmark schemes, the proposed LSTMH-RA scheme significantly improves the successful access probability, and satisfies the diverse QoS requirements of URLLC and mMTC devices.


翻译:提议了一个LSTM辅助混合随机访问计划(LSTMH-RA),以支持6G机器式通信(MTC)网络的服务质量要求(QOS)多样化,这些网络是超可靠的低潜伏通信(URLLC)和大型MTC(MMTC)装置共存的;这个计划允许URLLC装置通过分两步的无争议访问程序进入网络,以满足潜伏性和可靠性访问要求,以及MMMTC装置通过基于争议的提前访问(TA)辅助访问程序进入网络,以满足大规模访问要求;此外,为了降低URLC装置的耐久性,我们提出了一个基于关注的LSTM预测模型,以预测运行中的URLC装置的数量,从而动态地确定多用户检测算法参数;我们分析了LSTMH-RA办法的成功访问概率。 数字结果显示,与基准计划相比,拟议的LSTMH-RA计划大大提高了成功访问概率,并满足URLC和MTC装置的各种QOS要求。

0
下载
关闭预览

相关内容

Networking:IFIP International Conferences on Networking。 Explanation:国际网络会议。 Publisher:IFIP。 SIT: http://dblp.uni-trier.de/db/conf/networking/index.html
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
异常检测论文大列表:方法、应用、综述
专知
126+阅读 · 2019年7月15日
BERT/Transformer/迁移学习NLP资源大列表
专知
19+阅读 · 2019年6月9日
Deep Compression/Acceleration:模型压缩加速论文汇总
极市平台
14+阅读 · 2019年5月15日
【推荐】RNN最新研究进展综述
机器学习研究会
26+阅读 · 2018年1月6日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Arxiv
0+阅读 · 2021年5月27日
Arxiv
0+阅读 · 2021年5月27日
Parsimonious Bayesian deep networks
Arxiv
5+阅读 · 2018年10月17日
VIP会员
相关VIP内容
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Top
微信扫码咨询专知VIP会员