项目名称: 氧化物薄膜中的多维应变效应研究

项目编号: No.11274237

项目类型: 面上项目

立项/批准年度: 2013

项目学科: 数理科学和化学

项目作者: 杨浩

作者单位: 苏州大学

项目金额: 93万元

中文摘要: 应变是决定氧化物薄膜丰富物理性质的关键因素,现在已有一系列工作研究应变效应,但这些工作都有一定的局限性。其局限性在于:a)由于应变产生机制的限制,应变效应只能在很薄的薄膜中观测到;b)研究更多的集中于应变对物理性质的影响,对于应变与微结构之间的关系理解不够。本项目将以EuTiO3(ETO)为对象,从多角度研究氧化物薄膜中的应变效应。我们计划通过制备基于ETO的复合薄膜,产生直接作用于垂直方向的应变(垂直应变),从而改变应变产生的机制。并结合单相ETO薄膜的外延生长,用水平和垂直应变同时调控薄膜的物理性质和微结构,并研究应变-微结构-物理性质之间的关联性。从而结合应变作用方式的三维化和作用对象的多元化,加深对应变产生机制和作用机理这些基本问题的理解。并通过水平和垂直应变效应的比较,深入理解ETO中自旋-声子-应变之间的耦合机制。在此基础上,通过调控应变,增强ETO的功能性和实用性。

中文关键词: 钛酸铕;钛酸铕钡;应变;铁磁;铁电

英文摘要: Strain has been approved to be critical to determine physical properties of oxide thin films. There have been series of therotical and experimental works to invesigate the strain effects. Most of them fouced on the strain between thin film and substrate or the strain between different layers on a multilayer structure (called as lateral strain). While such lateral strain control experiments are elegant, the thickness over which substantial strains can be maintained is seriously limited, meaning that use of lateral strain control for any potential applications is restricted. Our recent work presented that self-assembled vertical nanocomposite systems have enormous potential to control strain in much thicker film by creating strain perpendicular to the substrate surface (called as vertical strain). On the other hand, only few papers concerned about the ralatoinsip between the strain and the microstrucre of thin film. It is technologically important and basically interested to control the microstructure of oxide thin film. Strain has been proved to be one of the critical issue. The technique to generate strain in a thicker film and the mechnism to manipulate the architecture in oxide thin films are challenges that motivate this proposal. The targeted material, EuTiO3 (ETO), are antiferromagnetic (AFM) and paraelec

英文关键词: EuTiO3;(Eu;Ba)TiO3;strain;ferromagnetic;ferroelectric

成为VIP会员查看完整内容
0

相关内容

北约《军事系统的网络安全风险评估》技术报告
专知会员服务
92+阅读 · 2022年4月18日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
104+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
38+阅读 · 2021年2月8日
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
快手电商宣告成年|焦点分析
36氪
0+阅读 · 2022年2月25日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年4月16日
Arxiv
0+阅读 · 2022年4月15日
Self-Driving Cars: A Survey
Arxiv
41+阅读 · 2019年1月14日
小贴士
相关主题
相关VIP内容
北约《军事系统的网络安全风险评估》技术报告
专知会员服务
92+阅读 · 2022年4月18日
专知会员服务
50+阅读 · 2021年10月16日
专知会员服务
101+阅读 · 2021年8月23日
专知会员服务
15+阅读 · 2021年6月6日
专知会员服务
19+阅读 · 2021年5月1日
专知会员服务
104+阅读 · 2021年4月7日
【经典书】数理统计学,142页pdf
专知会员服务
94+阅读 · 2021年3月25日
专知会员服务
38+阅读 · 2021年2月8日
相关资讯
微软发布量子计算最新成果,证实拓扑量子比特的物理机理
微软研究院AI头条
0+阅读 · 2022年3月18日
快手电商宣告成年|焦点分析
36氪
0+阅读 · 2022年2月25日
Science:量子计算机成功创造时间晶体
学术头条
0+阅读 · 2021年11月20日
流程工业数字孪生关键技术探讨
专知
1+阅读 · 2021年4月7日
这期Nature封面「雪崩」了!
新智元
0+阅读 · 2021年1月16日
【材料课堂】TEM复杂电子衍射花样的标定原理
材料科学与工程
38+阅读 · 2019年4月12日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
微信扫码咨询专知VIP会员