项目名称: 电子模湍流与新经典撕裂模多尺度相互作用实验探索
项目编号: No.11505228
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 孙鹏军
作者单位: 中国科学院合肥物质科学研究院
项目金额: 20万元
中文摘要: 未来聚变等离子体自持燃烧依赖于聚变α粒子的加热,α粒子主要加热电子的性质决定了改善和控制电子热输运能提高聚变反应堆的能量约束性能和降低发电成本。然而现有的微湍流(离子和电子模湍流)模型仅能解释现有聚变装置部分参数范围下的电子热输运。最近理论成果表明:微湍流与宏观磁流体模,如新经典撕裂模,能发生多尺度非线性相互作用并影响电子热输运。由于两者在时空尺度上的巨大跨距,现有计算机能力还不能实现对其相互作用的数值模拟,并且实验中也缺乏能同时测量它们的诊断装置,固数值模拟和实验鲜有相关报道。EAST装置CO2激光相干散射诊断能同时监测k=10-30 cm^-1范围的电子模微湍流以及新经典撕裂模;本课题将主要借助该诊断系统,在高功率辅助加热条件下,初步探索宽波数电子模微湍流可否与新经典撕裂模发生多尺度非线性相互作用过程及其能量传递方向,为未来聚变装置控制反常电子热输运及稳态运行提供重要的线索和数据积累。
中文关键词: 非线性;多尺度;微湍流;新经典撕裂模;相干散射
英文摘要: Energetic α particles from fusion reaction will be mainly heating source for future burning plasmas. The fact that α particles mainly heat electrons determines that improving and control electron thermal transport can improve the confinement performance of future fusion reactors and can significantly reduce the cost of electricity from fusion power plants. However, the present transport model based on microturbulence (driven by ion- and/or electron-driven modes) can only explain electron thermal transport in some parameter regimes in present fusion devices. Recent theoretical results in the literature show that microturbulence and macroscopic coherent MHD modes, e.g. Neo-classical Tearing Mode (NTM), can interact nonlinearly and this interaction can affect electron thermal transport. Due to the vast temporal and spatial scale separation between microturbulence and macroscopic coherent MHD modes, it is impossible for the present supercomputers to simulate their nonlinear interactions and there is also a lack of diagnostics capable of measuring them simultaneously on the experimental side. Thus there are very few publications on this subject in the literature. In particular, there is no publication of the interaction between microturbulence and NTM that we are aware of. The CO2 laser collective scattering system on EAST device can detect both microturbulence of k=10-30 cm^-1 in the range of electron-driven turbulence and NTM simultaneously. This proposal aims to exploit this diagnostics, coupled with high-power auxiliary heating available on EAST, to explore the existence of the multi-scale interaction between electron-driven turbulence and NTM as well as the energy transfer direction for the first time. The results from this work will contribute the goal of controlling electron thermal transport and steady-state operation in future fusion devices.
英文关键词: nonlinear;multi-scale;micro-turbulence;neo-classical tearing mode;collective scattering