项目名称: 加劲钢板-活性粉末混凝土(RPC)组合桥面板受力机理与疲劳寿命研究

项目编号: No.51478120

项目类型: 面上项目

立项/批准年度: 2015

项目学科: 建筑科学

项目作者: 赵秋

作者单位: 福州大学

项目金额: 87万元

中文摘要: 公路钢桥的桥面结构直接承受车轮荷载作用,是桥梁结构中最易损的部位之一,主要表现在钢桥面板开裂和钢桥面铺装破坏。本项目提出一种采用钢管剪力键连接的加劲钢板-活性粉末混凝土(RPC)组合桥面板,RPC内掺有钢纤维,充分发挥RPC的高强度、高韧性、低孔隙率等特性,在自重不增加或增加较少情况下,降低了钢桥面板疲劳开裂和铺装层损坏的风险。钢管剪力键断面小、侧壁薄,适用于与超薄混凝土层(5cm左右)连接,克服了传统剪力键应用在超薄混凝土层中的不足。本项目通过试验测试、数值模拟与理论分析相结合的方法,揭示在静力荷载和反复荷载作用下新型组合桥面板的受力机理与破坏模式以及桥面铺装的受力性能。优化组合桥面板的结构形式,提出组合桥面板的抗剪承载力、抗弯承载力和疲劳寿命的设计计算方法。结合试件制作对新型组合桥面板的施工工艺和维修方法进行研究,并进行全寿命成本分析。研究成果将为采用该类组合桥面板的桥梁设计提供参考。

中文关键词: 组合桥面板;受力机理;疲劳寿命;设计方法;试验研究

英文摘要: Deck structre of highway steel bridge directly supporting the wheel load on bridge, which is one of the most vuluneralbe parts in bridge structure,mainly in the steel deck plate cracking and pavement damge. This project proposes a stiffening steel plate-reactive powder concrete (RPC) composite deck with steel pipe shear connectors,as the RPC laced with steel fiber, the high strength, high toughness, low porosity characteristics of RPC are given full pay, under the condition of weight does not increase or less increase, the risk of deck fatigue cracking and pavement damage are reduced. Steel pipe shear connector section is small and the side wall is thin, applicable to the ultrathin concrete layer (5cm or so)connection, overcome the shortcomings of traditional concrete shear connectors in ultrathin layers. The experimental test, numerical simulation and theoretical analysis combination method is adopted in the project, reveal the new type of composite deck stress mechanism and failure modes and the mechanical properties of bridge deck pavement under static load and cyclic loading. Optimizated the composite bridge deck stucture, proposed design and calculation method of flexural capacity, shear strength and fatigue life for steel pipe shear connectors. Combined with specimen produced, research on construction technology and maintenance methods of new type composite deck, and analysis the life cycle cost. The research results will provide reference for the design of composite deck bridge.

英文关键词: Composite Deck;Stress Mechanism;Fatigue Life;Design Method;Experimental Study

成为VIP会员查看完整内容
0

相关内容

《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
23+阅读 · 2021年1月30日
专知会员服务
28+阅读 · 2020年8月8日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
辨识度拉满!iPhone 14 Pro / Max 精美渲染图大曝光
ZEALER订阅号
0+阅读 · 2022年3月23日
过度设计会扼杀你的产品
InfoQ
0+阅读 · 2022年3月5日
最新研究表明:EV电池「越老越安全」
机器之心
0+阅读 · 2021年5月8日
人工神经网络在材料科学中的研究进展
专知
0+阅读 · 2021年5月7日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月18日
小贴士
相关VIP内容
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
专知会员服务
34+阅读 · 2021年8月1日
专知会员服务
31+阅读 · 2021年5月7日
专知会员服务
23+阅读 · 2021年1月30日
专知会员服务
28+阅读 · 2020年8月8日
模型优化基础,Sayak Paul,67页ppt
专知会员服务
75+阅读 · 2020年6月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员