项目名称: 基于准一维半导体高性能场效应器件的研究

项目编号: No.60806028

项目类型: 青年科学基金项目

立项/批准年度: 2009

项目学科: 金属学与金属工艺

项目作者: 揭建胜

作者单位: 合肥工业大学

项目金额: 21万元

中文摘要: 以ZnO、ZnS、CdSe 纳米线、带等II-VI 族准一维半导体为主要研究对象,制备基于准一维半导体的场效应器件,对准一维半导体的电输运特性、器件化应用进行研究。准一维半导体的合成将采用气相蒸发、激光辅助气相蒸发等方法进行,并通过工艺的改进与创新,实现可控n-、p-型掺杂。利用光刻、电子束直写等成熟技术,制备准一维半导体场效应器件,对器件的制备方法、工作机理展开深入研究。进一步通过改善制备工艺、优化器件结构等措施提高纳米场效应器件的性能,使其具有接近甚至超越相应薄膜器件的性能,真正发挥纳米材料的性能优势。另外,通过使用PET 等柔性透明基底取代传统硬质基底,拓展准一维半导体器件在宏观电子学、柔性电子学等新领域中的应用,为下一步研究开辟方向。

中文关键词: 准一维半导体;场效应管;II-VI 族半导体;柔性器件

英文摘要: In this project, high-performance filed-effect transistors (FETs) based on onedimensional(1D) II-VI group semiconductor nanostructures such as ZnO, ZnS, CdSe nanowires and nanoribbons will be constructed and the transport properties as well as the device applications of these novel nanostructures will be further studied. Various growth methods include vapor phase evaporation and laser-assisted evaporation etc. will be employed to fabricate the 1D nanostructures. Controlled n- and p-type doping will be achieved by improving the existing growth methods as well as technical renovation. 1D FETs will be constructed by using mature technologies such as optical and electron-beam lithography. We will dedicate to develop feasible methods for constructing nanodevices with high stability and reproducibility and study the electrical properties of the devices to understand their work mechanism. The device performances of the 1D FETs will be significantly enhanced by improving the device fabrication methods and optimizing the device structures. It is expected the nanodevices will have high device performances that comparable to or even superior to the thin-film counterparts and the advantages of the nanomaterials will be fully exploited. Moreover, the applications of 1D nanostructure in flexible electronics and macro-electronics will be exploited by using flexible substrates such as PET instead of the conventional hard substrates in the device fabrication and thus open new opportunities for future nanodevices research.

英文关键词: one-dimensional nanostructures; field-effect transistors; II-VI group semiconductors; flexible devices

成为VIP会员查看完整内容
0

相关内容

北约人工智能战略总结
专知会员服务
77+阅读 · 2022年4月30日
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
18+阅读 · 2021年6月29日
专知会员服务
11+阅读 · 2021年6月20日
专知会员服务
35+阅读 · 2021年4月23日
专知会员服务
51+阅读 · 2020年12月28日
知识图谱本体结构构建论文合集
专知会员服务
103+阅读 · 2019年10月9日
美国断供芯片,俄罗斯决定从头开造光刻机
量子位
0+阅读 · 2022年4月11日
重磅!达摩院2021十大科技趋势
新智元
0+阅读 · 2020年12月28日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年5月2日
Arxiv
35+阅读 · 2021年1月27日
Arxiv
11+阅读 · 2019年4月15日
小贴士
相关VIP内容
北约人工智能战略总结
专知会员服务
77+阅读 · 2022年4月30日
《5G 毫米波赋能 8K 视频制作》未来移动通信论坛
专知会员服务
11+阅读 · 2022年4月15日
深度神经网络FPGA设计进展、实现与展望
专知会员服务
34+阅读 · 2022年3月21日
【NeurIPS 2021】基于潜在空间能量模型的可控和组分生成
专知会员服务
15+阅读 · 2021年10月23日
专知会员服务
18+阅读 · 2021年6月29日
专知会员服务
11+阅读 · 2021年6月20日
专知会员服务
35+阅读 · 2021年4月23日
专知会员服务
51+阅读 · 2020年12月28日
知识图谱本体结构构建论文合集
专知会员服务
103+阅读 · 2019年10月9日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员